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Abstract

Web search engines have been adopted by most universitisedoching webpages in their
own domains. Basically, a user sends keywords to the seagihesand the search engine
returns a flat ranked list of webpages. However, in univesstarch, user queries are usually
related to topics. Simple keyword queries are oftenfiient to express topics as keywords.
On the other hand, most E-commerce sites allow users to bramgsearch products in various
hierarchies. It would be ideal if hierarchical browsing &eyword search can be seamlessly
combined for university search engines. The maifidalilty is to automatically classify and
rank a massive number of webpages into the topic hieraréhiesiversities.

In this thesis, we use machine learning and data mining tquks to build a novel hybrid
search engine with integrated hierarchies for univessitialled SEEU SearchEngine with
hiErarchy forUniversities).

Firstly, we study the problem oftiective hierarchical webpage classification. We develop
a parallel webpage classification system based on SuppotoMslachines. With extensive
experiments on the well-known ODP (Open Directory Projdatpset, we empirically demon-
strate that our hierarchical classification system is végcéive and outperforms the traditional
flat classification approaches significantly.

Secondly, we study the problem of integrating hierarchatagsification into the ranking
system of keywords-based search engines. We propose a naokéhg framework, called
ERIC (EnhancedRranking by HerarchicalClassification), for search engines with hierarchies.
Experimental results on four large-scale TREC (Text RE&i€onference) web search datasets
show that our ranking system with hierarchical classifarautperforms the traditional flat
keywords-based search methods significantly.

Thirdly, we propose a novel active learning framework to iaye the performance of hi-
erarchical classification, which is important for rankinglyages in hierarchies. From our
experiments on the benchmark text datasets, we find thatative dearning framework can
achieve good classification performance yet save a comaditienumber of labelingfiort com-
pared with the state-of-the-art active learning methodsiferarchical text classification.

Fourthly, based on the proposed classification and rankiethods, we present a novel
hierarchical classification framework for mining acadenapics from university webpages.
We build an academic topic hierarchy based on the commorlged Wikipedia academic
disciplines. Based on this hierarchy, we train a hieraadhitassifier and apply it to mine
academic topics. According to our comprehensive analirsesacademic topics mined by our
method are reasonable and consistent with the real-wquld thstribution in universities.

Finally, we combine all the proposed techniques togethéimplement the SEEU search
engine. According to two usability studies conducted inE@E and the CS departments at
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our university, SEEU is favored by the majority of partianps

To conclude, the main contribution of this thesis is a noeaksh engine, called SEEU, for
universities. We discuss the challenges toward building\$Bnd proposeftective machine
learning and data mining methods to tackle them. With exterexperiments on well-known
benchmark datasets and real-world university webpageetstave demonstrate that our sys-
tem is very &ective. In addition, two usability studies of SEEU in ourversity show that
SEEU has a great promise for university search.

Keywords: Hierarchical Classification, Search Engine, System Evialna
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Chapter 1

Introduction

Since the emergence of WWW techniques in the 1990s, the welbd@ome the major in-
formational medium for both faculty and students in uniitegs. Every day, thousands of
education and research activities are published as e-daagron the web. With the explosive
growth of university webpages published onlingeetive organization and search of university
webpages is very important.

Web search engines, due to their great success on the gemdrahave been adopted by
many universities for searching webpages in their own domaMost of the existing web
search engines (such as Google) licensed by universiteesrdy based on keyword search.
Basically, a user sends keywords to a search engine anddhehsngine returns a flat ranked
list of webpages.

However, searching webpages in universitiesfiedent from searching information on the
general web. In a university search, user queries are offated to topics (e.g., academics,
campus life, news and media) [16]. Simple keyword queriesoftien insificient to express
complex topics as keywords [29] (e.g., finding professora Bpecific research area among
multiple universities). On the other hand, modern facetsdch engines [51] in E-commerce
sites (such as Amazon and eBay) let users browse and seatbh oategories of various
hierarchies (such as product categories and regions ofdhd)wSuch faceted search engines
have been shown to be morffextive for searching information in complex hierarchiesrth
general keywords-based search engines [50].

It would be ideal if hierarchical browsing and keyword séacan be seamlessly combined
for university search engines. Such hybrid search engill@s asers to search by keywords
as in Google while drilling down to any (sub)category in rnplé hierarchies. If users do not
choose any hierarchy, it would be the same as the currentl&a0g the other hand, users can
also browse any (sub)category without keywords, and thelseggine will return a list of the
most popular webpages (e.g., the webpages with the highgeRank values [85]) within that
category.

In this thesis, we propose a novel hybrid search engineedc&8EEU SearchEngine with
hiErarchy forUniversities), for Canadian universities to facilitateaasch collaboration, and
help faculty members and students find desired webpages @asily. The novel and key
idea is to incorporate multiple relevant hierarchies (saglacademic topics, universities and
media types) for university webpages in SEEU. See Figur@&lielhome page) and Figure 1.2
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2 CHAPTER 1. INTRODUCTION

(the result page) for the user interface (Ul) of SEEln SEEU, about two million webpages
from the top 12 largest Canadian universities are crawlas;gssed, and then classified into
hierarchies.

See inside the Universities
in ontario

Browse Academic Topics Browse Universities
All Topics . Uﬁ.;_ Il /- Clazr 21t
Business {3,710) & Brock

Education {4,528} + [eartston
Engineering {5,550} @ l:‘ Guelph
Health science {7,553} @ D Mchaster

Humanities (43,724} o [ottaws
Journalism and media studies (22,215) o I
Law (3,001} + [Iryersan
Medicine (7,441} @ D Toronto
Natural sciences {45,235} 5 D Waterloo
Social sciences {33,512}

hd Westsrn {278,421}
_ Dthers

L Dwindsur
# DYurk

Figure 1.1: The home page of SEEU. Beneath the search bohar®pic hierarchy, the
university hierarchy and the file type hierarchy.

The main challenge in building SEEU is to define commonly ptee hierarchies, and
automatically classify and rank a massive number of webpage various hierarchies (such
as academics, campus life and media types) for universiidthough hierarchical faceted
search engines [50] have already implemented such furattipnit should be noted that the
items (e.g, products, books, CDs and so on) in these seagthesmare pre-labeled by human
experts. Give the large number of webpages published dailpiversities, manual labeling is
not feasible.

In this thesis, we use machine learning and data mining rdetho tackle these chal-
lenges. Firstly, we develop arfective hierarchical webpage classification system forelarg
scale webpage categorization in SEEU. Secondly, we prapesERIC EnhancedRanking
by hl erarchicalClassification), a novel ranking framework that combinesdrighical classifi-
cation with keywords-based ranking. Thirdly, we proposeaehactive learning framework
to improve hierarchical classification, which is very imgamt for ranking in hierarchies. With
extensive experiments on well-known benchmark classibicand web search datasets, we
empirically demonstrate that our proposed methods areeffggtive and they outperform the
traditional flat classification and search methods sigmtiga

Based on these techniques, we propose a new hierarchissifidation framework to mine
academic topics from the challenging two million universitebpages in SEEU. Specifically,
we build the academic topic hierarchy based on the commaugped Wikipedia academic
disciplines. We train a hierarchical classifier and apptyp itlassify university webpages into
the academic topic hierarchy. According to our compretvenanalysis, the academic topic
pattern mined by our system is reasonable, consistent hatinetal-world topic distribution in

1SEEU can be visited &ittp://kdd.csd.uwo.ca: 88/seeu
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most universities, and better than the state-of-the-art tmodeling methods.
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Figure 1.2: The result page of SEEU. It shows an example otkegy for “professor” in the
“Computer Security” category in Toronto, Waterloo and \Westin SEEU.

Finally, we combine all the proposed techniques togethéimplement the SEEU search
engine. According to two usability studies conducted inE@E and the CS departments at
our university, SEEU is favored by the majority of partiays

The rest of this chapter is organized as follows. In Sectidn We review several search
engine approaches that are closely related to ours. Theyesmeords-based search engines,
web directory and faceted search engines. In Section 1.2anaé/ze the advantages and
disadvantages of these approaches when applied for uityveesarch. In Section 1.3, we
describe the motivation and challenges for a new searcherigr universities. We present
the user interface of SEEU, and briefly discuss the advastaige implementation challenges
of SEEU. In Section 1.4, we list our major contributions irstthesis. Finally, we close this
chapter by presenting the thesis outline in the last section
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4 CuaPTER 1. INTRODUCTION

1.1 Search Engine Approach Review

In this section, we review three search engine approachgearé closely related to our works.

They are keywords-based search engines, web directoryaaetetl search engines. We de-
scribe the basic concept and technique behind these saagotes, and discuss their advan-
tages and disadvantages.

1.1.1 keywords-based Search Engines

The first search engine approach we discuss is the keywaskdsearch. keywords-based
search engines are currently the most popular search eagpreach for the web. They pro-
vide users a simple and intuitive way to find information. Erample, Figure 1.3 shows the
user interface of the Google search engine. It simply castaisearch box and several search
buttons. When users type keywords in the search box andtbiec&earch button, Google will
quickly return a ranked list of relevant results (in sevéahdred milliseconds).

GO k)gl(’.

Canada

Google Search I'm Feeling Lucky

Google.ca offered in: francais

Figure 1.3: The home page of Google search engine.

How can the keywords-based search engines, such as Goegle results so quickly?
To achieve this, keywords-based search engines usuatlpmnghree important components to
effectively rank the massive number of webpages. They are vestlens, index databases and
searching model.

The task of web crawlers (or web spiders, web robots) is wleke@bpages and store useful
data into the index database. Specifically, keywords-bssacth engines usually launch many
web crawlers that periodically surf the web. Each web cravgtehes webpage content from
remote web servers, extract hyperlinks as well as text deteebpages and stores them into
the index database (explained later). After that, the walwiar follows the hyperlinks on the
webpage to fetch more webpages.

The index database is the key tti@ently retrieve the relevant webpages in a short period.
Given a user query, a naive approach to search is to scanaiwedrwebpages sequentially.
However, it fails when the crawled dataset is very largehsagcwebpages on the entire web.
To deal with this challenge, keywords-based search engiftes use a data structure, called
inverted indices [3], to speed up the search. Simply speakin a text collection, the inverted
indices maintain a table that maps each word to a list of decuposition pairs. For example,
given a text collection crawled by web crawlers,
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1.1. SArcH ENGINE APPrROACH REVIEW 5

e d; ="Active Learning for Hierarchical Text Classification”.
e d, ="A Survey of Hierarchical Text Classification”.

e d; =“Engaging Students Through Active Learning”.

The inverted indices are incrementally built when the de&mgine indexes the three docu-
ments. The results are shown in Table 1.1. It contains meltdpcument-position lists. Each
list contains all the word occurrence for a unique word indh&a collection. For example, for
the word “active” {(1, 1), (3, 4)} means that the word “active” appears at the first positiat in
and the fourth position ids.

Table 1.1: An example of inverted indices. The two numbessdim each bracket are the
document ID and the word position.

Word Document-position list
“active” {(1,1),(3,4)}
“learning” {(1,2),(3,5)}
“for” {(1,3)}
“hierarchical” {(1,4),(2,4)}
“text” {(1,5),(2,5)}
“classification” {(1, 6), (2, 6)}
“a” {(2,1))
“survey” {(2,2)}

“of” {(2,3)}
“engaging” ()
“students” {(3,2)}
“through” {(3,3)}

Given a query “active learning”, the search engine extrémsvords “active” and “learn-
ing” from the query, conducts set intersection on the docuni@s of their corresponding
document-position lists, and returns two documedisand dz, to the user. The positions
stored in the database can be further used to highlight twedeels in results.

It has been shown that both the space complexity and time lexitypof searching through
inverted indices are close @(n°®) [3]. Thus, the inverted indices allow search engines to find
relevant webpages very quickly.

The third component of keywords-based search engine isdaecling model. Many
searching models have been proposed for keywords-basett eegines. The simplest search-
ing model is theboolean modegl 3] which is based on boolean algebra. In bu®lean model
the occurrences of words in both queries and documents signasd binary truth values (i.e.,
true or false. Users familiar with boolean logic can use boolean opesate.g., AND, OR,
NOT) to connect keywords, and thus express complex seasfition. The search engine only
returns relevant results satisfying the boolean exprassiormed by users witkrue value.
However, a drawback of thieoolean modeis that the results are judged based on a binary
decision value (i.etrue or falsg. As theboolean modetan not provide graded scores, it is
impossible to further rank the relevant results. In additfor normal users, it is often ficult
to translate search intention precisely into boolean esgio@s.
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6 CuaPTER 1. INTRODUCTION

To resolve the binary matching problem in theolean modelwe can resort to theector
space mod€99, 100]. The basic idea of theector space modés to represent both queries
and documents as vectors of words, and assign a numeriaglhtyant binary (true or false)
weight, to each word. Those word vectors can be used to caripatiegree of similarity
between indexed documents and the query. Thusydicéor space modalan measure the
relevance of documents to the query much more preciselyeXample, given a query vector
Vg = (W1, Wy,...,W,) and a document vectory = (W1, Wo, ..., Wy)?, we can measure their
similarity by cosine similarity, which is

Vq N Vd

—_— 11
IVl - [vall 1)

sim(Vg, V) =

wherevy - vy is theinner productof vy, andvy; |[vgl| is thenormof vy and||vgl| is thenormof vg..

The most popular weighting schema in tector space modes the TFIDF weighting.
It measures both the term frequency (TF) and the inverserdentifrequency (IDF) for a
matched word in the query. The TF factor assigns high weitghtise frequent words in docu-
ments. Usually, the more often a word appears in the docyrtieninore relevant it is against
the query. For the IDF factor, the intuitive idea is that coomwords occurring in many
documents are not discriminative to distinguish a reledacument from irrelevant ones.

Formally, given a document, the TFIDF score of a termtis computed as

TEIDF(t,d) = TF(t,d)- IDF (t, D) (1.2)
where f(t.d) DI
TF(t,d):m and IDF(t,D):logl{deDted}|

f(t,d) is the number of occurrences of tetnm documentd and|D| is the total number of
documents in the collection.

The main drawback of theector space modés that it can not deal with synonymy (i.e.,
multiple words that have similar meanings) and polysenw.,(ia word may have multiple
senses and multiple types of usage ifiedtent contexts) because thector space modeleeds
to exactly match terms in queries and documents.

1.1.2 Web Directory

The web directory is a directory service for the web. It oigas websites (or individual
webpages) into predefinedopic hierarchy (taxonomy). The taxonomy can be either @ggn
purpose topic hierarchy, or a hierarchy related to a spearBa. Examples of well known
general web directories are the Yahoo! Directoand the Open Directory Project (ODP)
Figure 1.4 shows their user interfaces. We can see thateuttix keywords-based search
engines, a web directory contains a topic hierarchy on theehpage. Users can browse
webpages in categories of the hierarchy without typing lags.

2For the two vectorsy; = 1 means that the wond; exists in the query or the document amd= 0 means it
does not exist.

Shttp://dir.yahoo.com/

“http://www.dmoz.org
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YAHOOJ DIRECTORY Qa search Web | [dm[olz] open directory project

aboutdmoz |gdmorblog | suggest URL |help | link

Yahoo! Directory sevanced Seach Succest s Site

Search | advanced

Arts & Humanities News & Media

clography, istor, Lerzture Newspagers, Rai, Weather,Blogs i I
Pholograghy Hista, Liertu Newspapers, Radio Westher, B0 Arts Business Computers
Business & Economy Recreation & Sports Movies, Television, Music Jobs, Real Estate, Investing. Intemet, Software, Hardware
s Spors, Travel, Ao,
Games Health Home
Video Games, RPGs, Gambling...  Fitness, Medicine, Altemative.. Family, Consumers, Cooking,
Kids and Teens

Arts, School Time, Teen Life.

Reference
Maps. Education, Libraries

B2 e us e the Yoo Dirsctory - e your deas

(a) Yahoo! Directory (b) ODP

Figure 1.4: The home pages of (a) Yahoo! Directory and (b) @B directory.

We give a brief discussion of the Yahoo! Directory and the Giixectory. The original
Yahoo! search engine is the oldest example of a web directorglies on human féorts to
organize webpages into hierarchies. Usually, the editiogkws conducted by paid employees
in Yahoo!. Due to the slow editing process by a small group aifl wvorkers, the Yahoo!
Directory can not keep pace with the fast growth of the webti@mother hand, ODP applies
an open and free editing policy. Any Internet user can applye an editor of a category in
the hierarchy. When an anonymous user submits a website ategary for inclusion, the
corresponding editors review the submission request aodi€¢o accept it or not. Due to
the open editorial policy, ODP has become the largest wedrtdiry on the web. From the
statistics shown on the ODP home page in May 2013, there areé98y000 editors working on
over one million categories that include 5.1 million webgsty

The major advantage of a web directory over keywords-basacck engines is the hi-
erarchical browsing functionality. Users interested ir@fic topics can browse webpages in
corresponding categories without typing keywords. In addj as webpages in web directories
are categorized by human editors, the quality of webpagssifieation in a taxonomy is usu-
ally very high. Thus, the relevance of webpages in each oagag often satisfying. However,
a drawback of a web directory is that the relevant webpageacdh category are very limited.
This is because manual classification is too slow to clasgifthe webpages on the web. For
this reason, web directories mainly acts as an archive (fafirectory) or data providers
(e.g., ODP) for Internet companies, such as AOL, NetscapecB@and Google Directory.

1.1.3 Faceted Search Engines

The faceted search engine is a hybrid search engine apptio@icbombines keyword search
and hierarchical browsing (or web directory) to supportlesation and discovery within an
information collection [51]. The usefulness of facetedrskaas been demonstrated by its
numerous applications in E-commerce sites (such as Amambe-8ay) [111]. The key dif-
ference that distinguishes faceted search engines froergdeywords-based search engines

5See the statistics at the ODP websitap: //www. dmoz . org.
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is a set of flat or hierarchical facets (see the left panel®@iier interface at Amazon in Figure
1.5). These facets can be seen as hierarchies that orgsenze (e.g., products, documents,
images and so on). When users select labels of facets in #reintsrface (e.g., selecting
“Movies & TV” under the facet “Departments”), the facetecszeh engine returns results that
satisfy the conjunctive normal form (logical conjunctiddisjunctions) over the selected la-
bels under each facet[51].

For example, Figure 1.5 shows an example of searching thearflafe of Pi” on Amazon.
A user chooses the facet labels as

e Departments: “Movies & TV”

¢ Video Format: “Blue-ray” or “DVD”

e Price: “Over $20”

These facet values are translated into a conjunctive ndormal as

(Departments= “Movies & TV")
A (VideoFormat= “Blue-ray” v VideoFormat= “DVD" )
A (Price > 20)

Query =

whereA is the operator of logic conjunction andis the operator of logic disjunction.

amaz_on-ﬁﬂ Your Store | Deals Store | Gift Cedificates = Help | enfrancais

Shop by 2 L 2 = Hello. Sign
Search Movies & TV w g

Department ~ ' life: of pi Your Acc

Movies & TV Advanced Search  Browse Genres  New Releases  Bestsellers  Deals TW Shows  Bluray  En francais

Departments
¢« Any Category

Movies & TV Related Searches: les miserables, lincoln, zero dark thirty.
Video Format Showing 21 Results
Clear
¥ Blu-ray
¥ pvD

New Releases
Last 30 Days
Last 20 Days

Coming Soon
Price
< Any Price
Over $20 Life of Pi/ L'histoire de Pi Life of Pi 3D / L'histoire de Pi 3D
. (Bilingual) [Blu-ray + DVD + Digital (Bilingual) [3D Blu-ray + Blu-ray +
5 to's = Ccopy] (2013) Starring Suraj Sharma,  DVD + Digital Copy] (2013) Starring
e Rafe Spall, Irrfan Khan and Gerard Suraj Sharma, Rafe Spall, Irrfan Khan

Depardieu
v 20 CDN$ 24.97 Blu-ray

ext 28 hours and g
&

10% Off ar More
25% Off or More
50% Cff ar More

£19)

and Gerard Depardieu
e + CDN$ 29.97 Blu-ray
L Oy

28 hours and

Figure 1.5: An example of searching for the 2012 movie “Liféd on the Amazon site.

Due to the integrated facet hierarchies, faceted searcmenfpave several advantages
over the keywords-based search engines and the web diesctdfirstly, when users issue
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complex search requests (such as the searching “Life of Rimele above), using faceted
search engines is more intuitive and natural than the keysvbased search engines. Users do
not need to precisely formalize their search intention asmaptex boolean expression. They
can simply click the corresponding facet labels. Secordifjerent from the web directories
which only have one topic hierarchy, faceted search endiags multiple orthogonal facet
hierarchies for users to refine results. This is very helfifidearch products (such as books,
movies and laptops) with flerent meta properties (i.e., brands, price, size, relgasate,
authors and so on).

We can see that the key to the success of faceted search ngjithe facet hierarchies
and the classification of items into these hierarchies [6]mbst E-commerce sites (such as
Amazon), as their product databases already provide ridctsted meta properties (such as
price, brands and size), both the hierarchies and the fitadgn of items can be extracted
without much &ort. However, in unstructured data collections, such aslapage dataset, it
could be very challenging. Some authors [30, 108, 72] havpgeed methods to automatically
building facet hierarchies and classification of items. haligh these methods do not need
human supervision, the hierarchies generated by theseodeetieavily depend on the quality
of corpora [30]. For webpage collections that contain a fdteierogeneous data, the quality
of the hierarchies generated by these methods may not lséysagi

In this section, we have discussed threffedent search engine approaches. These ap-
proaches have many successful applications on the web. \owehen we apply these ap-
proaches to search university webpages, will we always apetfging results? In the next
section, we analyze the limitation of these approaches wpghed in university search.

1.2 Limitation of Current Approaches

Many Canadian universities currently license Google’sdeavith “site:” to restrict search
results to be within their own domaihsThus, we will firstly analyze the limitation of using
keywords-based search engines, such as Google, for segarahiversity webpages.

When professors and graduate students use keywords-temett €ngines to search uni-
versity webpages, the queries sent by them are usuallyedetatacademic topics. However,
simple keywords-based search is often very limited in esging topics as keywords [29]. For
example, consider searching for “active learning”, a regeéield in Computer Science (CS).
When a graduate student in CS department sends the keyveoedkeaywords-based search
engine, such as Google, she expects the search enginertotretuesults that not only contain
keywords “active learning” but also belong to CS researobweler, the returned results (see
Figure 1.6) are actually quite noisy. From Figure 1.6, we sa@& that only the 6th result is
about CS research. The other top five results belong to edna&search. This is because
“active learning” can also mean a methodology in educatesearch that increases student
engagement in classrooms [90].

5TheGoogle Search Westeat the home page of Western is essentially the Google seattthsite:uwo.ca”.
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Web |mages Groups [News Local Western

active leaming Google Search Westemn

Western

UNIVERSITY -CANADA
Search Results 1 - 10 of about 1150 for acti

Next=

Active Learning

... Active Learning. ... Incorporating Active Learning into Your Lectures Article from

Reflections. by Colin Baird and Karen Edge June 1997. External Links. ...
www.uwo.caltsc/resources/selected_teaching_topics/student_engagement/active_leaming.html - 23k - 2012-10-02

Problem-based Learning

... Problem-based Learning. Problem-based learning (PBL) is an "active learning”

strategy characterized by the use of open-ended problems. ...
www.uwo.caltsc/resources/selected_teaching_topics/student_engagement/problem_based_leaming.html - 24k - 2012-10-02

[ More results from www.uwo.ca/tsc/resources/selected_teaching_topics ]

Active Learning

... Active Learning. Active learning. as the name suggests, is a process whereby

learners are actively engaged in the learning process. ...
www.uwo.cal._fresources/resources_graduate_students/ta_handbook/giving_information/active_learning.html - 23k - 2012-10-02

Incorporating Active Learning into Your Lectures, Spring 1997

... Incorporating Active Learning into Your Lectures, Spring 1997. ... What might

these active learning activities be that you can use during your classes? ...
www.uwo.caltsc/resources/publications/newsletter/selected_articles/active_learning_lectures.html - 31k - 2013-04-04

Active Listening and Mate-taking - King's University College

... of the college academic experience. and for students eager to make the most

of them. active listening and note-taking are powerful learning tools. ...

www_kings.uwo.cal_ flearning-skills-services/learning-skills-videos/active-listening-and-note-taking/ - 13k

Department of Computer Science - UWO

... Mew Paradigms for Active Learning. ... In summary. this thesis focuses on
controlling the learning process to achieve fine goals in active learning. ...
www.csd.uwo.ca/Talks/PhDAug23_900_12_shtml - 19k

Figure 1.6: Search “active learning”, a research field in @otar Science irtsoogle Search
Western

One may say that for this example we can type more keywordsfilwer results, such as
“active learning computer science”. We try this query andvskhe results in Figure 1.7. We
can see that although all the results are related to CS oésezach result must contain the
keywords “computer science”. This is also problematic. &#mse some important webpages
without the keywords “computer science” will now be filtereat. If we type more keywords,
the results will become even worse as more results will berditt out.

To solve the keyword ambiguity problem, we may resort to thed wlirectory approach
where people can browse webpages without typing any keysvo&lppose there exists a
very large topic hierarchy that covers all the academiccpiFor the above case, a user
can browse the category “active learning” in the hierarchg mnay quickly find the relevant
results. Although this approach sounds perfect to solvekélysord ambiguity problem, it
is unrealistic for several reasons. Firstly, it is quit&idult to define a commonly accepted
hierarchy to capture all the academic topics. If such a hibgaexists, it could be very large
and deep, and thus inconvenient for users to use. Secondlynétective to only browse one
topic hierarchy to find the desired results. For examplepssp we want to find “Computer
Science” related textbooks. If we just browse the webpageleuthe category “Computer
Science”, we may need to sequentially scan many pages dfgésudind related textbooks.
The larger a category is, the slower the result scanningowill
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Web |Images Groups [Mews Local Western

active leaming computer science Google Search Westem

Western

UNIVERSITY -CANADA
Search Results 1 - 10 of about 185 for active learning compt

Next=

Department of Computer Science - UWO

... standards page. Department of Computer Science. ... PhD Defense. Jun Du.
Active Learning with Generalized Queries. Date: Time ...
www.csd.uwo_ca/Talks/PhDSep09_230_11.shtml - 27k

Department of Computer Science - UWO

... page. Department of Computer Science. ... PhD Defense. Ai-Ling (Eileen)
Mi. Mew Paradigms for Active Learning. Date: Time ...

www._csd uwo_calTalks/PhDAug23_900_12_shtml - 19k

[ More results from www.csd.uwo.ca/Talks |

Department of Computer Science - UWO

... Costs Jun Du - September 9, 2011 Active Learning with Generalized ... DMNA
Watson - Crick Complementarity in Computer Science Baozhen Shan ...
www.csd.uwo_ca/Research/PhD/ - 32k

Charles X Ling's Home Page

... faculty member in Computer Science at Westem ... Internet, business, health
science and so ... 11; Semi-supervised learning (active learning. co-training ...
www.csd.uwo.cafacultyfling - 12k - 2013-03-04

Charles X_Ling's publications List (Selected)

... Journal of Foundations of Computer Science {lJFCS) on ... Cognitive Science
18(4): 595 - 621. 1994 ... Active Learning with Human-Like Moisy Oracle. ...
www._csd.uwo.caffaculty/ling/papers_html - 27k - 2012-06-23

[ More results from www uwo.ca/faculty/ling ]

Department of Computer Science - UWO

... Active areas of research include computer ... security, software engineering
computer algebra. pen ... linguistics. machine learning. cognitive learning ...
www.csd.uwo.ca/new_grad/ - 16k

Department of Computer Science - UWO

... inintelligent informatics, active information fusion ... Ph.D. degree in Computer
Science from the ... Data Mining, Machine Learning. Artificial Intelligence ...
www.csd.uwo.ca/Research/Colloguium/oct26_10.shtml - 30k

Figure 1.7: Search “active learning computer sciencé&saogle Search Western

In fact, we can combine the keywords-based approach and ¢bedivectory approach
together to better resolve the keyword ambiguity probleimisTs actually the faceted search
engine approach. It inherits the advantages of both appesad-aceted search engines allow
users to search by keywords as in a keywords-based searicie evigle choosing (i.e., drilling
down) any (sub)category in the hierarchy to refine the ressdlely in that category. For
example, to find “Computer Science” related textbooks, wessarch keywords “textbooks”
in the category “Computer Science”.

However, faceted search engine approaches still have therexk of €fective classifica-
tion of webpages into hierarchies. fiéirent to the E-commerce sites where products have rich
pre-labeled meta properties (such as price, brands and saenal webpages do not provide
explicit information about topics. One may say that simitathe web directory approach, we
could recruit professionals (i.e., professors and reseassistants) in universities to generate
a high quality classification of webpages. However, it sidag noted that human classifica-
tion speed is quite slow compared with the explosive growath of webpages. For Western,
the total number of webpages already exceeds two millioegtimated by Google), and this
number is quickly growing every day.

To summarize, in this section, we have analyzed the linoitestiof applying current search
engine approaches for searching universities webpagesofQhe major dficulties is to solve
the keyword ambiguity problem. Although these approachesbe adopted to tackle this and
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other problems, they are either based on unrealistic agsumsor lack of éective algorithms.
In the next section, we propose a new search engine for witlysearch.

1.3 SEEU: A New Search Engine with Integrated Hierar-
chies for Universities

In this thesis, we propose a novel search engine with intedrhierarchies, called SEEU
(SearchEngine with hErarchies forUniversities), for Canadian universities to facilitate re-
search collaboration, and help faculty members and stadient desired webpages more eas-
ily. The novelty of SEEU is to incorporate multiple relevdmérarchies (such as academic
topics, universities and media types) for university wejgsain SEEU. See Figure 1.1 (home
page) and Figure 1.2 (result page) for the user interface ¢JEEEU. In SEEU, about two
million webpages from the top 12 largest Canadian univessdre crawled, processed, and
then classified (using data mining and machine learning oaksbhinto hierarchies based on
their content, not the department or faculty structure.

1.3.1 Advantages of SEEU

Many Canadian universities currently license Google’s@eavith “site:” to restrict search
results within their own domains. Compared with such a sengplution for university search,
SEEU has four major advantages.

Firstly, SEEU can greatly facilitate research collabanatvithin and between universities.
Faculty members and students can easily search peopletmepss or various research areas
within a single or among multiple universities. For exampliggure 1.8(a) shows an example
of searching the Department of Economics webpages, ande=ig8(b) shows an example of
searching for professors doing researclComputer Securityn three universities simultane-
ously in SEEU. Performing such search tasks in traditioealegal search engines without a
university hierarchy could be very inconvenient. Usersehtavtype diferent “site” keywords
(or switch back and forth amongftirent university search engines) to compare the results in
different universities.

Secondly, in SEEU, users can find desired webpages much emsilg as they can integrate
keyword search and browsing together, or use the hierarthiter the results. Figure 1.8(c)
and Figure 1.8(d) show such examples. When searching thegaous keywords “active
learning”, researchers inftierent disciplines such a&omputer Sciencand Education can
simply choose the corresponding topics to restrict thelt®smuonly within their own research
areas We can see that in both cases, the top ranked results in SEEXeusively related to
the selected category. Without the integrated topic heésarsuch search tasks could be very
difficult in flat search engines.

"SEEU can be visited aittp://kdd.csd.uwo.ca:88/seeu.
8f users are not familiar with SEEU’s topic hierarchy, thenalso use the category search box above the
hierarchy to locate the desired categories.
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Thirdly, for some search tasks, users may not always knowt idavords to use, as they
may not be familiar with the domain. In this case, they car@eppropriate categories (e.g.,
topics and universities) and browse the webpages withpindyany keywords. For example,
Figure 1.8(e) shows an example of browsing globally the mogtlar and important webpages
in the 12 universities, and Figure 1.8(f) shows an exampbe@i/sing the webpages belonging
to Earth Sciencesn three universities simultaneously in SEEU. By contrasttiraditional
general web search engines, no keywords often means ntstesul
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Figure 1.9: The home page, the topic hierarchy dialog andeabelt page in SEEU Mobile.
The university dialog and the file dialog are similar to thei¢adialog.

The fourth major advantage is that SEEU is particularlyadlé for small-screen devices,
as browsing is much easier than typing keyword(s) on smatdards [64, 52]. The user
interface of SEEU can automatically adapt to devices witlalsstreens without losing Ul
consistency (see Figure 1.9 for the mobile user interface&EU)? Specifically, due to the
limited screen size, the three hierarchies of SEEU are ceglay three buttons on the home
page. When users click one of the buttons (say Topics), SEBUIiIBopens a popup dialog
(of full screen size) (see Figure 1.9(b)) that only showsdiment selected category and its
child subcategories in the hierarchy. Users can click arel@subcategory to browse or filter
the search results. To the best of our knowledge, none okiduels engines currently adopted
by Canadian universities (on their home pages) provide iapiecific user interfaces.

1.3.2 Challenges of Building SEEU

The novel and key idea of SEEU is to leverage multiple relelki@rarchies to search university
webpages. Among the three hierarchies (i.e., topics, wsitiess and media types) in SEEU,
the most powerful yet diicult one is the topic hierarchy. There exist three majorlehgkes to
integrate the topic hierarchy into SEEU.

1. How to define a commonly accepted academic topic hierdartyniversity webpages?
2. How to efectively categorize millions of university webpages itte hierarchy?

3. How to dfectively rank webpages in each category of the hierarchy?

°Both PC and mobile versions of SEEU have the same entry litktap: //kdd.csd.uwo.ca:88/seeu.
When users visit SEEU on mobile devices, they will be autically redirected to the mobile version of SEEU.

www.manaraa.com



1.4. GONTRIBUTIONS OF THE | HESIS 15

The first challenge is to define a commonly accepted acadepic hierarchy for uni-
versity webpages. A reasonable and user-friendly hieyaofhopics is very important for
university search. It can greatly benefit the search expegi®f the users. To build such a
hierarchy for universities, we need to consider at leastitagortant criteria. Firstly, the topic
hierarchy must be academe related. It is desirable to prade@ararchy with a broad coverage
of common academic disciplines so that the majority of ursig users will feel it is familiar
and convenient in finding the desired topics. The secondriit is that the hierarchy should
be friendly for users to browse. Usually, the tree-strusdiunierarchies are intuitive and ac-
ceptable in most web-based applications. However, a ceatpli hierarchical structure (with
deep categories) may be too complex for normal users. Thusphvenience consideration,
the hierarchy should not be too deep.

The second challenge is to design &ieetive method to classify millions of webpages into
the predefined hierarchy. As we discussed in Section 1.2uatatassification of webpages
is hopeless due to the large number of webpages and the ex@mgowth rate. Traditional
text classification methods can only classify documents anfew classes [57, 93, 113, 120].
However, in SEEU, the topic hierarchy may contain a large memof categories. Designing
an dfective classification algorithm that can scale to milliohgvebpages in a large hierarchy
is crucial. In addition, the algorithm should also consither hierarchical relationship between
different categories. It is useless to predict contradictezboaies (e.g., a webpage predicted
to “Machine Learning” but not “Computer Science”).

The third challenge is toffectively rank webpages in each category of the hierarchas Tr
ditional keywords-based search engines usually only relkeywords matching and page
importance metrics (e.g., PageRank [85]) to rank webpdgewever, in SEEU, when a user
searches webpages in a category of the hierarchy, we alsameensider the category rele-
vance of webpages. Usually, given a category of the hieyaraht all webpages are equally
relevant to it. For example, consider a case when we seaeckeywords “active learning”
inside the category “Computer Science”. There may exiseseebpages that simply mention
“active learning” in the text. Their relevance to “Compuggience” may not be as high as
the theoretical research works on “active learning”. THBSEU should also take category
relevance into consideration.

1.4 Contributions of the Thesis

Effective information organization and retrieval in univées is important. Current search
engine approaches have limitations in dealing with thelehgks of searching university web-
pages. Integrating topic hierarchies and keyword searkhas/n to improve the users’ search
experience in E-commerce web sites. A major challenge ingdso for university webpages
is to define a commonly accepted academic topic hierarcloyef@ectively classify and rank a
massive number of university webpages into the hierarchy.
In this thesis, we propose a novel search engine approaamieersities, called SEEQ

(SearchEngine with hErarchies forUniversities), for Canadian universities to facilitate re-
search collaboration and help people find desired uniyengbpages more easily. The main

10SEEU can be visited &t tp: //kdd.csd.uwo.ca:88/seeu.
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contribution of this thesis are listed as follows.

1. An dfective hierarchical webpage classification system. Ita@iosta webpage feature
extraction tool based on Hadoop MapReduce, and a paradirchical SVM (Support
Vector Machine) classifiers based on OpenMPI. Part of thikkwas published in the
Proceeding of the 22nd Internation Joint Conference onfiardl Intelligence(IJCAI
2011) [67].

2. ERIC Enhancedranking by herarchicalClassification), a new ranking framework for
search engines with hierarchies. It integrates hieraattalassification probabilities,
keywords relevance and document related metrics into aileato rank [45, 62, 18]
framework. This work was submitted to tHeEE Transactions on Knowledge and Data
Engineering(IEEE TKDE) [75].

3. A novel active learning framework for hierarchical teldssification. It leverages the
top-down tree structure to coordinate classification sysaed data labeling source on
limited labeled datasets. This work was published inRheceeding of the 17th Pacific-
Asia Conference on Knowledge Discovery and Data Mir{il/gKDD 2013) [76]. An
earlier work was published in theroceeding of the 16th Pacific-Asia Conference on
Knowledge Discovery and Data Minif@AKDD 2012) [74].

4. A novel application of the proposed classification andkiragnmethods for mining aca-
demic topics in universities.

5. A prototype of SEEU search engine and two usability seidfesSEEU in our university.
This work was included in our IEEE TKDE paper [75].

The relation of all contributions can be visualized in Figgar10.

Evaluation Search Engine Implementation
and Usability Studies

Application Mining Academic Topics in Universities

A Novel Active Learning
Framework for Hierarchical
Classification

An Effective Hierarchical A New Ranking Framework

Algorithms ! ) . ! ) ' )
Classification System with Hierarchical Classification

Figure 1.10: The relation of all contributions.

1.5 Thesis Outline

This thesis is organized as follows. In Chapter 2, we revierélated works in the field of text
classification, hierarchical text classification, leagnin rank and topic modeling. In Chapter

www.manaraa.com



1.5. Tuests OUTLINE 17

3, we describe an implementation of afieetive hierarchical webpage classification system.
In Chapter 4, we propose the ERIEnhancedRanking by herarchicalClassification), for
search engines with hierarchies. In Chapter 5, we propos®el active learning framework
for hierarchical text classification. In Chapter 6, we depeh novel application based on
the proposed classification and ranking methods to mineemgigdtopics in universities. In
Chapter 7, we present the system implementation and cotwloctsability studies to evaluate
SEEU. We end this thesis with conclusions and a discussi@utafe works in Chapter 8.

Part of the work presented in this thesis is in collaboratih Dr. Charles Ling, Da Kuang
and Dr. Huaimin Wang.
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Chapter 2
Related Work

In this chapter, we review previous work related to our wdfkstly, as we study document
classification and retrieval in this thesis, we review tladesbf-the-art text classification meth-
ods in Section 2.1. Secondly, we review previous work indngrical classification related
to the hierarchical browsing and search in SEEU in Secti@n Zhirdly, in Section 2.3, we
review previous work in learning to rank which is relatedhe tanking of documents in each
category of the topic hierarchy in SEEU. Finally, in Sectidd, we review topic modeling
techniques, which are related to mining academic topicsiwveusities in SEEU.

It should be noted that we mainly revig@neraltopics in each research area in this chapter.
Specific work which is directly compared with ours, will bevi@ved in greater detail in the
later chapters.

2.1 Text Classification

In SEEU, we are facing the problem of webpage classificaiiure to the explosive growth of
documents (webpage) on the web, manual classification isleésg Most text classification
applications on the web (e.g., spam filtering [2, 98], nevislarcategorization [71, 79] and
sentiment classification [86, 65]) usually adopt automt&txt classification by supervised text
classification methods.

In supervised text classification, we train a classificatrmdel from a set of training data
with labels provided. Usually, the labels are predefined category (class) space. Thus, the
task of supervised text classification is to label documenitsone or more predefined classes.
If the category space has only two classes, the classifice8k is calledinary classification
For classification problems with more than two classes, h@udhent can only be assigned to
one class, the classification task is calfedlti-class classificatiofb7, 93]; if a document can
be assigned to multiple classes, it is calhedlti-label classificatiorjl113, 120, 82, 124].

We give a formal definition of supervised text classificatiorthe framework ofbinary
classification For multi-class classificatioandmulti-label classificationwe can decompose
the learning task into severbinary classificatiorsubtasks by training a binary classifier for
each class (i.e., one-vs-rest strategy) [93, 113].

Consider a dataset from a domaink Y whereX is the example set an¥ is the label set
{1, —1}. We usually call the example with label 1 a positive examplkthe example with label

18
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-1 a negative example. We assume that a trainin®sgt = {(X, i)} € X x Y is given. Each
(%, Yi) in Dyain denotes a training example and the associated labgl The classification
problem is to learn a decision functidn: X — Y from the training seDy4jn With good
classification performance on a separate testin@get= {(x;, y;))} c X x Y.

In the next subsections, we will firstly review the three mpgpular text classification
algorithms that learn the decision functién They areNaive Bayesk-nearest Neighboand
Support Vector MachineAfter that, we review the methods that evaluate text di@sgion
algorithms on the testing SBkes:.

2.1.1 Naive Bayes

In Naive Bayeg$83], given an example, the decision outpuf(x) is learned by maximizing
the posterior probability?(y|x):

f(X) = arg maxP(y|x) (2.1)
yey

By applying the Bayes rule, this equation can be rewritten as

f(x) = arg maxP(y|x) = arg maxw (2.2)

yey yey P(X)

As P(x) is constant, we can simply remove it and yield the followsngpler form

f(x) = arg ?aXP(Y) P(Xly) (2.3)
ye

Therefore, to learn the classification modelNdive Bayeswe need to learn the conditional
probability P(xly) and the prior probabilityP(y).

It turns out that calculatind?(xly) is difficult as we do not know the distribution of
To deal with this issueNaive Bayesnakes anaive assumption that each documentan
be represented by a bag of worlag, ws, . .., w,} from a vocabularyv and the words in the
document are independent of each other [70]. Thus, theidadisction f (x) can be rewritten
as

f(X) = arg maxP(y)P(xly) = arg maxP(y) [ | P(wily) (2.4)
yey yey i=1

Finally, we can compute the decision outpgx) as

= n - = = — n - = —
(9= |& PU=DILPWY=2>Py=-DIILPWyY=-1) g
0, otherwise
The posterior probabilit?(y|x) for each clasy can be obtained as
Ply=1) I, P(Wly =i

Y- Py =1) [T, P(wily = i)

To train aNaive Bayesnodel, we learn the parametdpgy) and P(wily) by the maximal
likelihood principle. Specifically, we can calculd®gy) based on the empirical frequencyyof
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in the training set abl(y)/m, and calculate the posterior probabilRgw;|y) of each wordw; as
NW;,Y)/ 2wev N(Wi, y), whereN(y) is the total number of examples with laehndN(w;, y)

is the total occurrences of womg in the examples with labsl. These values can be easily
calculated by counting the frequency in the training set.

It should be noted that the conditional probabilfw;|y) is calculated only from the train-
ing set. When we applilaive Bayedo new documents, it is very likely that we will see
unknown words which will result in a zero probability (iM(W,y)/ Xwev N(W;, y) = 0). This
is undesirable. A common way to solve this problem is tolaptace smoothing

N(w;, ) + k
Swev N(Wi, y) + k= V|’

where Kk is the laplace parameter dugis the vocabulary size. Usually, we set the paramieter
to 1. That means we add one pseudo example to each word in¢hbuwlary.

There are two advantages Whive Bayes Firstly, it is very dficient to train the classifi-
cation model as we only need to scan the training set onceutat @oord frequency. With the
recent advances in Big-data platform such as MapReduceW&2tan #iciently trainNaive
Bayeson hundreds of thousands of documents. Secondly, preglioBw documents is also
very dficient. As the parameters are already calculated, a simpligpiraation of the prior
probability and the conditional probabilities of each woeth yield the prediction.

However, a major disadvantageMéive Bayess the unrealistic independence assumption.
Naive Bayesassumes that the words of a document are independent. lwoelal applica-
tion, the words are often correlated, such as “machine ilegifrand “data mining”. Simply
discarding such correlation may cause the posterior pitityaB(y|x) to be not well calibrated

[5].

P(wily) = (2.7)

2.1.2 K Nearest Neighbor

K Nearest NeighbofKNN) [48] is an instance-based, or lazy-learning classificegigorithm.
Unlike Naive BayesKNN does not need a training stage to build the classificatioreinddhe
main computational cost ®NN is in the prediction stage (i.e., classifying new examples)
The general idea d{NN is very simple. Given an exampie KNN firstly finds k nearest
neighbors for this example and then classifies as to the noostnon class bynajority vote
among the k neighbors. More formally, the decision functi¢x) of KNN can be defined as

f(x k) = arg ?axm e N6 K)lyi =y, (2.8)
Ye

wherek is the parameter dNN and N (x; k) is thek nearest neighbors of exampte

The standaranajority votemethod may not work well in imbalanced datasets where ex-
amples from the major class will dominate the k neighbors.ddal with this issue, we can
weigh the vote of each neighbor by its distance to the testagnple. The intuitive idea is that
closer examples should have higher weights than more tisxamples. The weights can be
computed as the inverse of any distance metrics, such &uttielean distance

Regarding the advantagesiiiN, we can see that it is very simple to implement. For high-
level programming languages, such as Matlab, the implestientof KNN only takes several
lines of code. In addition, the classifier can be updatederds there is no cost in training.
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HoweverKNN has several weaknesses in text classification. Fitsh is very sensitive
to the noisy and irrelevant features. The prediction aayud KNN can quickly degrade
when the total number of features grows. Secondly, as al&aping algorithmiKNN requires
storing the training examples. This could be of great codtthus make&NN difficult to scale
to large datasets.

2.1.3 Support Vector Machine

Support Vector Machind§VM9 are currently the state-of-the-art text classificatiggoathms
[60, 61, 20, 121]. SEEU us&VMas the base classifier for document classification. We will
give a detailed description &M

In SVM[26], each example& in the training set is represented as a point in a high dimen-
sional feature space. The basic ide&®Mis to find a hyperplane that separates the positive
examples and the negative examples in the training set hithargest margin (i.e., distance
to the boundary of each class). For example, in Figure 2.2aam see three hyperplartésg
H, andH;. H, andH3 can separate the two classes. However, éhlys themaximal margin
hyperplane as demonstrated in Figure 2.1b.

o
s

A". s
7
(a) SVM separating hyperplanes (b) SVM maximum-margin hyperplane

Figure 2.1: Support Vector Machine.

We describe the formation of tlreaximal margirprinciple. Formally, given an example
the decision hyperplane (functiom)of a SVMis defined as the equatidifx;w) = w-x—b =
0 wherew and b are the parameters. Let us assume that the dataset is Yirsegudrable.
This is usually true as the high dimensionality of text feasuusually results in the dataset
being linearly separable [60]. We need to find two hyperpdaparallel tof such that no
training examples fall between them (perfect classificgtand their distance tb is maximal.
Mathematically, the two hyperplanes can be definedvas<x—b = 1 andw-x-b = -1
respectively. Thus, the so-called margin (geometric distebetween the two hyperplans) of
SVMcan be calculated ag|gvj|.
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Therefore, training &VMmeans to find the best andb to minimize|lwj. To avoid the
difficulty of dealing with the square root jlv|, we usually change it té||w||2. In addition, to
ensure that no training examples lie in the margin, we neadidioconstrains for each training
examplex. Thatis,yi(w-x —b) > 1. Thus, training ar6VM can be formalized as an
optimization problem:

min || w]?
. wb : . (2.9)
subjecttoyw:-x —-b)>1, Vi(l<i<m)

It may be argued that the assumption of perfect linear sbpdyds unrealistic in a real-
world application. This is usually due to the mislabeledregies or noise in the training
set. Cortes [26] proposes the soft margin approach by intiod the slack variableswhich
measure the degree of the misclassification of training @ksn The optimization problem
becomes - , -

m’b',?z lw* +C Xz, & (2.10)
subjecttoyi(w-x —b)>1-¢&, Vi(1<i<m)
whereC is the parameter for tradédetween the maximal margin and the minimal classifica-
tion error.

Many approaches have been proposed for solving this og#tmaiz problem, such as Se-
guential Minimal Optimization [87], Stochastic Gradieneé$zent [125, 102] and Dual Coor-
dinate Descent [56]. The typical software packages fonimgiSVMinclude SVMLight [61],
LibSVM [23] and LiblinearSVM [41].

We list the advantages of usii®yMas the text classification algorithm.

1. Good generalization capability SVMhas good generalization capability 8¥Mtries
to maximize the margin between the positive and the negatiamples. Moreover, with
the soft margin [26] introduced in the optimization equati®VMis even robust against
the noisy data in the training set.

2. Effective text classification Usually, the word vocabulary for text data is very large.
The high dimensionality of text datasets often leads to taming data being linearly
separable [61, 41]. Thu§VMwith linear kernel (e.g., LiblinearSVM) is often very
suitable for text classification task.

Due to the advantages mentioned ab@&¥Mis a good choice for our task. Furthermore,
previous work [60, 61, 20, 121] empirically verifies ti&¥Mis superior to other classification
algorithms such asaive BayeandKNN, in terms of text classification performance. Thus, we
chooseSVM specifically linealSVM as the base classification algorithm to classify webpages
into search engines (see Chapter 3).

2.1.4 Evaluation Measures

In this subsection, we review methods to evaluate the ¢iesson performance of classifiers
on the testing set. We firstly introduce a tool, called a csiiu matrix [107], for perfor-

mance analysis. The confusion matrix is a table with two rawd two columns (see Fig-
ure 2.2). Each cell in the table reports the number of spearédiction judgements, includ-
ing true positives (TP), false positives (FP), false negati(FN), and true negatives (TN).
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Each of the four statistics is computed based on the claspifegliction and the actual true
classes. For example, given a classifieand a testing datas€t.s, TP can be computed as
Pesi 1(f(x) = 1 andy; = 1) wherel is the indicator function with value 0 and 1 defined on

the logic expressionf(x) = 1 andy; = 1".

Actual positive Actual negative

TP Fp
Predicted positive | (# true positives) | (# false positives)

FN TN
Predicted negative | (# false negatives)| (# true negatives)

Figure 2.2: Confusion matrix.

The simplest performance measure is the accuracy, whicéfiisedl as the proportion of
correctly classified examples in the testing set:

TP+TN

Maccuracy( f) = TP+EP+EN+TN

(2.11)

Although the definition of accuracy is very intuitive, it iarely used in real-world text clas-
sification due to the class imbalance problem [58]. For exangiven a spam classification
dataset with only ten positive examples (i.e., spam maild)30 negative examples (e.g., nor-
mal mails), it is trivial to achieve 90% accuracy by predigtiall examples as negative (i.e.,
normal mails). However, suchhaghly accuratealgorithm is useless for spam classification.

To make a realistic evaluation of classification perforneame imbalanced datasets, people
have developed several motéeetive measures. The most popular measures are preciglon an
recall.

TP
Mprecisior(f) = m (2.12)
TP
Mrecai(f) = TP+ EN (2.13)

We can see that precision is actually the ratio of correctgdjzted positive examples over
all positive predictions; and recall is actually the ratf@orrectly predicted positive examples
over all actual positive examples.

We use an example to show thétdrence among the three measures. Consider again the
spam classification dataset with ten positive examples antkg§ative examples. We assume
that a classifief makes a confusion matrix as shown in Table 2.1.

www.manaraa.com



24 CHAPTER 2. ReLatep WORK

Table 2.1: An example of confusion matrix.

Actual positive| Actual negative
Predicted positive TP=1 FP=3
Predicted negative FN=9 TN=87

Then, we havéMaccuracy = (1+87)/(1+87+3+9) = 0.88, Myrecision = 1/(1+3) = 0.25 and
Mrecan = 1/(1+9) = 0.1. The high accuracy is actually very misleading while thégrenance
measures based on precision and recall are more realigigzifisally, for the reported spam
mails, only 25% prediction is correct based on precisiorseBleon recall, we can find that this
classifier can only detect 10% spam mails. The results basg@dezision and recall make us
reject this spam classifier for real-world deployment.

Usually, it is more convenient to judge classification perfance by a single measure. To
make a trade4b between precision and recall, we often use the harmonic rokprecision
and recall, called F1-score [121], in text classification:

2 _ 2% Mprecisior(f) X Mrecai(f)

Mt1-score( f) =
scor Mpmilsion(f) + Mreclau(f) M precision( f) + Mrecan(f)

(2.14)

Figure 2.3 plots the 3D value curve of a F1-score based onspracand recall. We can
see that to achieve a high F1-score, classifiers must hatehigit precision and high recall.
Optimizing classifiers on a single measure regardless obtter measure, will not improve
F1-score much. For example, for the spam classificationsdatae discussed before, if a
classifier predicts all examples as positive, it can achi®@o recall but the precision will be
only 10%. This results in the F1-score as low as 0.18.

0.9-1
0.8-0.9
0.7-0.8
0.6-0.7
®0.5-0.6
®0.4-0.5
m0.3-04
®0.2-03
m0.1-0.2
m0-0.1

Fl-score

Recall

Figure 2.3: The value curve of F1-score based on precisidmexsall.

To conclude, based on the discussion above, we mainly udeltiseore to evaluate clas-
sification performance. Precision and recall will also beduto explain the results of the
F1-score.
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2.2 Hierarchical Text Classification

We choose&upport Vector MachingSVM) as the base classification algorithm in SEEU. How-
ever,SVMis a binary classifier which can only categorize two clasdashierarchical text
classification, the taxonomy (hierarchy) usually contariarge number of categories. How
can we adopSVMto categorize text documents into very large hierarchiagfig section, we
review the previous work in hierarchical text classificatioNMe will present our hierarchical
classification system in Chapter 3.

According to Silla [106], the approaches in dealing withrarehical classification can
be generally categorized into the flat classification apgrpthe top-down approach, and the
global classifier (or Big-bang) approach. In the followindpsections, we will review the three
approaches briefly.

2.2.1 Flat Classification Approach

@

Positive Negative
of 4 of 4

Figure 2.4: An example of the flat classification approach.

The flat classification approach [4, 49] is the simplest m&thdhich ignores the hierarchical
structure of the categories. This approach usually adbgt®he-vs-rest strategy to decom-
pose the hierarchical classification task into multiplealynclassification tasks on the leaf
categories. Specifically, the flat approach builds a binkysifier at each leaf category to dis-
tinguish all the other leaf categories. For example, giveieearchy as shown in Figure 2.4, the
flat approach builds a binary classifier at the 4th categorydiyg the examples belonging to
4 as positive training examples and the examples at the lethiecategories (i.e., from the 5th
to the 12th category) as negative training examples. Duhagrediction phase, if an example
is classified into the 4th category, based on the “IS-#glation in the hierarchy, the example
will also be categorized to the 1st category.

We can see that as a simple learning method, the flat appreasny easy to implement
by adopting existing binary classification algorithms. Hwer, the flat approach has several

1“S-A” is a relationship where a category A is a subcategdrgrmther category B.
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weaknesses. Firstly, the positive and negative class dfréi@ng set for each classifier are
usually very unbalanced. For example, in Figure 2.4, thaineg class of the 4th category
is eight times larger than the positive class. This imbagmoblem will make it diicult to
learn a good classification model. Secondly, as each ckasisifihe flat approach is trained on
the entire dataset, the computationgibe can be very high for to a large hierarchy with hun-
dreds of leaf categories. Thirdly, the flat approach assuhstsall the examples must be pre-
dicted into the leaf categories while many real-world agadions are actually non-mandatory
leaf-category classification tasks [106]. That is, the egxla@ndoes not need to be classified at
the leaf categories. For example, given a hierarchy coinigia path “Science>“Computer
Science>"Atrtificial Intelligence”, the home page of the Computer &ute department should
only be categorized as “Scienee*Computer Science”, not “Artificial Intelligence”.

2.2.2 Top-down Classification Approach

0

PR —— ——
Positive Negative | :
of 1 @ of1 :_ 2 3 :
@ ! (7)) (8) (9) (o) (1) (2
|

Positive  Negative
of 4 of 4

Figure 2.5: An example of the top-down classification appinoa

Unlike the flat approach, which only builds binary classfiet the leaf categories, the top-
down approach [37, 110, 109, 81] builds a binary classifieeach category of the hierarchy.
Thus, by setting a proper prediction threshold on each oagethe top-down approach can
classify examples into internal categories [110, 22]. Iyrba argued that the top-down ap-
proach is not asficient as so many classifiers are trained on the hierarchy.adide this
problem, the top-down approach builds the training set&checategorjocally by only using
the examples belonging to its parent category. For exarmpkagure 2.5, for the 4th category,
its training set consists of the examples belonging to thecdtegory (as positive examples)
and the examples belonging to the 5th and the 6th categone(gdive examples). Compared
with Figure 2.4, we can see that a large portion of the nega&kamples from the 7th to the
12th category are excluded.

There are two benefits of this strategy. First, the trainiogt ©f the top-down approach
is much smaller than the flat approach. At each category dfigr@archy, as the negative ex-
amples are only selected from the examples belonging todhenpcategory, the size of the
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training set is exponentially smaller than the flat approaSkcond, the top-down approach
will not suffer from the serious class imbalance problem. As a large nuaflmegative exam-
ples are excluded from the training set, the class distobudf training sets in the top-down
approach is more balanced than the flat approach. This vefitexally lead to better classifica-
tion performance.

In the prediction phase, the top-down approach predicthpies from the top-level to the
bottom level. Specifically, given a testing example, thesifgers at the top level first predict
it as positive or negative based on prediction threshdlddter that, at each category, if the
example is predicted as positive, the top-down approadhreglrsivelypush it down to the
lower-level child categories for further prediction unkike leaf categories are reached.

There are also several weaknesses of the top-down apprBash.the classification per-
formance at the deep categories may not perform well duestertiall size of positive training
examples. With very limited training examples at deep aaieg, it may be dficult to achieve
accurate classification performance. Second, the top-gweatiction algorithm may be sub-
optimal. The top-down approach uses thresholds to filtemgkas from the top level to the
bottom levels. Sometimes, a high threshold may cause exabfmcked at the top level, while
a low threshold will introduce wrong prediction into the lemevels. This is usually called the
false negative and the false positive trafien the top-down approach. Some methods have
been proposed to tackle this problem, suctBixking[109] andRefined Expertg/]. How-
ever, both approaches require training another hieraathbiassifier to refine the results. This
is not practical for very large hierarchies.

2.2.3 Global Classification Approach

The global classifier approach basically constructs ongydassification model for the entire
hierarchy. This is dferent from the flat approach and the top-down approachesgwhany
binary classifiers need to be built. Some hierarchical dlaaton algorithms can be catego-
rized as global classifier approaches, such as the HMC dadiste [114], the hierarchical
kernel classifier [95] and the deep classifier [119]. In tlaéning phase, these methods often
rely on various special algorithms to cope with the hiermalrelations between categories.
For example, the HMC decision tree uses Predictive Cluggélirees (PCT) [12] to learn opti-
mal attribute-value tests to partition training set interrchical clusters. These attribute-value
tests can be used to categorize examples into clusters Wieereajor category in a cluster is
used as a prediction result. The deep classifier proposeasrehsieased method to reduce a
very large and deep hierarchy into a small and shallow heagaiand build a multi-class Naive
Bayes prediction model. The hierarchical relations betwdi§erent categories are further
leveraged to increase the positive examples of deep cadsgor

All the global approaches can directly output a subset ohteerchy as prediction in the
testing phase. Thus, the prediction time of the global aggras smaller than the flat and the
top-down approaches. However, a major drawback of the gkyiyaroach is that it may be
difficult to model complicated relations among categories imglsiclassification model. In
addition, the global approach also lacks the modularityheftbp-down approach. When we

2|f the prediction probability is larger (smaller) than thegiction threshold, the example will be classified as
positive (negative).
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add a new category into the hierarchy, we only need to add aoieawy classifier for the top-
down approach. However, for the global approach, we may twaxetrain the entire classifier
again on the new hierarchy.

To summarize, in this section, we have reviewed three hikreal classification approaches,
namely the flat approach, the top-down approach and the Igégdpoach. Previous work
[31, 81, 33] has shown that the top-down approach perforrtieftdan the flat classification
approach. Moreover, the top-down approach is reported t& eftectively on very large hi-
erarchies [81]. Therefore, we choose the top-down apprimdherarchical text classification
in SEEU (see Chapter 3).

2.3 Learning to Rank

Effectively ranking documents in each category of the hiegaiimportant in search engines
with hierarchies. In this section, we review previous wonkd@arning to rank. We present our
ranking system in Chapter 4.

In the information retrieval literature, learning to rankams using machine learning meth-
ods to rank documents in search engines according to thevarece to the queries. Formally,
consider a training s@y..in = {(q;, Di, <i)I1 <1 < m} where each training examplg (D;, <)
consists of a querg;, a document lisD; = {d;, d,, ds, ..., d,}, and an optimal ranking; (i.e.,
da i dy if and only ifd, is more relevant tg; thand,). We want to learn a functioh on Dy,
that can output a good ranking for a pair of a query and a dontihis¢in the testing seéDies.

Many learning algorithms have been proposed for the ranghafplem in recent years.
Based on the input-output representation and the loss @atilon methods, these approaches
can be categorized into three groups, namely the pointwdpeoach, the pairwise approach
and the listwise approach.

2.3.1 Pointwise approach

Given a query, the pointwise approach assumes that eacim@éotun a training example can
be assigned a relevance score. Thus, the ranking problerhecapproximately tackled by
pointwise optimization methods (i.e., optimizing on indwal documents), such asgres-
sion[45, 27], multi-class classificatiofi73] and ordinal regressior[28, 25]. We tabulate the
difference of the three methods in Table 2.2.

Table 2.2: Classification of pointwise approach.

Method Input Output Loss Function
Regression Single document Real values Regression loss
Multi-class classification Single document Categories s€lifecation loss
Ordinal regression Single document Ordinal categories im@rdegression loss

The regressionmethod is the simplest pointwise ranking approach. It le@amegression
function by minimizing the regression loss (e.g., mean segi@rror) [27]. Given a query,
after we use a regression function to output regression énigal) scores for all the indexed
documents, it is straightforward to rank documents by timeseerical scores.

www.manaraa.com



2.3. LeEARNING TO RANK 29

Themulti-class classificatiomethod assumes that the relevance of documents can be cat-
egorized into several categories, suchrasevant relevantand highly relevant Thus, the
ranking problem can be cast as a multi-class classificatiobl@m. This is motivated by the
fact that perfect classification leads to perfect rankirg].[7

Theordinal regressiommethod assumes that the relevance scores of documentslaral or
categories (e.ghighly relevantx relevant< irrelevan{). Thus, theordinal regressiormethod
can be seen as a hybrid mdgressionand multi-class classification For example, givem
ordinal categories, Crammer [28] firstly learns a regresfimction on the training set. After
that, it learns intervals (e.g.a; < f(X) < by, (1 <i < n)) each of which represents an ordinal
category. Based on this, a large margin principle is furggreposed to maximize the margin
between adjacent ordinal categories (€¥.,(a — bi_1)) [104, 103].

The main advantage of the pointwise approach is the simpliée can directly reuse
existing regression or classification methods. Howevenay be dfficult to learn good clas-
sification (or regression) model for ranking due to the er&reninority of relevant instances
[101].

2.3.2 Pairwise approach

The pairwise approach is the most popular learning to rapkageh. In the pairwise approach,
given a query, the input training examples are multiplegafrdocuments with a binary pref-
erence judgement. The pairwise learning algorithms treaor a preference functidnon the
training set by minimizing the pairwise classification I@ss., a relevant document is ranked
lower than an irrelevant document). In the testing phasengh queryg and two of the testing
documentsl; andd,, the preference outpd{d;, d;; g) = 1 means that the documeiitis more
relevant than the documedyt; —1 means less relevant.

Table 2.3: Pairwise approach.

Method Input Output Loss Function
Pairwise A pair of documents Preferences Pairwise clagsiitloss

Many work can be categorized into the pairwise approaches, as RankNet [17], Rank-
Boost [44] and RankSVM [62]. Here, we primarily review therlR&VM algorithm, which is
currently used in SEEU.

Similar to [28, 104, 103], RankSVM also represents the legrto rank problem as mul-
tiple ordinal regression. Unlike the traditional regressiearning, which tries to minimize the
mean squared error, RankSVM learns the ranking model bynmizmg the pairwise loss in a
large-margin optimization framework [53, 62].

ming | WP +C £ S0, 460
subjectto w (X - x) > 1- ¢}, if y, = (2.15)
&hz0i=1....m
wherew is the model parameteg is the tradefi between model complexity and classification

error;gﬁ?, is the classification error on the example paixgéndx, in theith training example;
yfj?v denotes the preference of exampleverx, in theith training example.
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We can see that the formation of RankSVM is very similar tottaaing of SVM (see the
review in Section 2.1.3). In fact, we can simply tregt- x, as the training examples, and use
the classic SVM optimization algorithm to perform binargssification on these examples to
learn the model parameter

It has been shown that minimizing pairwise classificaticwreis equivalent to maximize
the lower bound of ranking loss [62]. To make RankSVM scalectty large datasets, recently
Joachims [63] proposes ti&V M2 algorithm for training RankSVM that proved to have
linear time complexity.

2.3.3 Listwise approach

The listwise approach directly optimizes the ranking ovkethe documents associated with a
guery. Unlike the pointwise and the pairwise approachesirput of the listwise approach is
usually a query and kst of documents. Based on thef@irence of optimization methods, the
listwise learning methods can be categorized into two gspap tabulated in Table 2.4. The
first group tries to minimize the loss function defined onglkemutatiorof a list of documents,
such as ListNet [19]. The second group tries to optimize theogate loss of the IR evaluation
measure, such as AdaRank [117] and LambdaMART [18]. Thegate loss is a simplified
ranking loss which is mathematically easier to optimizenttiee complex IR measure, such as
NDCG [59].

Table 2.4: Classification of listwise approach.

Method Input Output Loss Function
M|_n|m|_zat|on A list of documents Permutation Listwise loss
of listwise loss
Optimization

A list of documents Ordinal categories Surrogate loss
of IR measure

The listwise approach is reported to outperform the poisgvdapproach and the pairwise
approach in the literature [19, 117, 18]. However, the ragknodel generated by the listwise
approach is usually much more complex than the other appesac~or example, in the re-
cent Yahoo! learning to rank challenge [24], all of the LamblBART based ranking methods
consist of a large number of regression trees. The high noaseplexity makes it diicult for
human interpretation and thus may be impractical in realchepplication.s

To summarize, in this section, we have briefly reviewed thypes of learning to rank
approaches, namely the pointwise approach, the pairwg®agph and the listwise approach.
Due to the simplicity and thefieciency of the pairwise approach, we use the pairwise approac
more specifically, thes VM2 algorithm, to rank documents in each category of the topic
hierarchy in SEEU (see Chapter 4).

2.4 Topic Modeling

Aresearch area closely related to the work of mining acadéwpics in universities in SEEU is
topic modeling in natural language processing and infolonaetrieval literature. In general,
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a topic model is a type of mathematical model for discoveahgtract (or latent) topics from
a collection of documents. The intuitive idea behind topimdaling is that given documents
within the same topics, some particular words may appeae rfnequently than other words.
Many topic modeling methods have been proposed recently.b@lckground mathematics of
these approaches mainly originates from linear algebrgeastahbilistic modeling.
In this section, we briefly review three most popular topicdglong algorithms, namely

LSA, PLSA and LDA. We will present our topic mining methodsGhapter 6 and compare
the results with state-of-the-art topic modeling methods.

2.4.1 Latent Semantic Analysis

Latent Semantic Analysis (LSA) [34] is a dimensionality wetlon technique that projects
documents to a lower-dimensional, latent semantic (togpece where documents with sim-
ilar topics may be close to each other. By doing s@fedent terms having similar meaning
(synonyms) can be roughly mapped to the same group in tha lspace. Thus, it is possible
to measure the similarity between pairs of documents ewteyfdo not share any terms. This
is very common in text classification and clustering wheeeltgh dimensionality of text fea-
tures usually results in high sparsity of datasets. Thdew,terms are shared between most
pairs of documents.

LSA models the text as a term-document maixvhere each elememn; represent the
occurrence of the term in the documend;. To discover the latent topics behind the corpus,
LSA uses Singular Value Decomposition (SVD) to decomposentitrix X into three small
matrices as shown in Figure 2.6. The valugso, ..., oy, are called the singular values, and

X U z VT
Yoo X, o - 0 [ Vi ]
= L!l v ll‘, e . .| e
xﬂilrl e xm:n O e G! [ Vi ]

Figure 2.6: The SVD decomposition of term-document maxrix

U, Up,...,Uu andvy, Vo, ..,V are the left and right singular vectors. It turns out that whe
we select thek largest singular values (i.e., the first k entries along tlagahal of}}) and
the corresponding singular vectarg U, ..., U from U andvy, Vs, ..., from V, the term-
document matrixX can be approximated b = Uy 3 V] with minor error. In other words,
we actually strip away most trivial dimensions but only ké@mportantabstractdimensions
which capture the most variation X Thek remaining vectors itJy andV, correspond to
k hidden topics where terms and documents participate. Basetlis, we can project the
documents into the semantic spacdas- Y, V] and apply any standard clustering algorithm
to group documents into topics. In addition, we can alsogmtderms into another latent space
asT’ = Uy D

Although LSA can detect synonyms, it may not work well to hHarmblysemy (i.e., a word
may have multiple senses and multiple types of usagefierdnt contexts). The reason is that
in SVD decomposition, after we compute the matrix produgd,, each ternt; is mapped
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exactly as a single poirttin the latent spac&’, which means that LSA treats the occurrence
of each term as the same meaning no matter what documenitanégpears. This may
be unrealistic in a real-world application, such as infdioraretrieval where polysemy terms
are very common (e.g., “active learning” @omputer Sciencand Educatior). Probabilistic
Latent Semantic Analysis [54], a statistical techniqueyaposed to tackle the deficits of LSA.

2.4.2 Probabilistic Latent Semantic Analysis

Probabilistic latent semantic analysis (PLSA) [54] is distizgal technique for the analysis of
co-occurrence data, such as term-document data. Unlikestiemt Semantic Analysis (LSA)
which stems from linear algebra and decomposes the datangyl&r Value Decomposition
(SVD), PLSA is based on a statistical model, called an asmectel [55] which models the
co-occurrence data by associating a latent varialiteeach observation (e.g., a temnin a
documentd).
PLSA assumes that the terms in dataset are generated bystapse
(1) Select a documertwith probability P(d).
(2) Pick a latent clasawith probability P(Zd).
(3) Generate a word/ with probability P(w|2).
This process can be expressed as a joint probability model as

P(w, d) = P(d) Z P(Wz)P(Zd) (2.16)

zeZ

wherew andd are conditional independent given the latent tapic
Following the maximum likelihood principle, the paramest&d), P(w|z) and P(zd) can
be learned by maximizing the log-likelihood function

L= Z Z n(d, w)logP(d, w) (2.17)

deD weW

wheren(d, w) is the term frequency oiv in document. A standard procedure to learn the
parameters in an aspect model is via Expectation Maxinoz485].

We can find at least two advantages of PLSA over LSA. Firstiysodering the model
interpretability, PLSA has a clear advantage over LSA bsed&L SA provides a more intuitive
definition of the hidden topics. Specifically, in PLSA, forchdatent variable (topicz, the
top ranked terms by conditional probabiliB{(w|z) give a natural interpretation of the topic
meaning forz. By contrast, in LSA, the values in the term-topic matrix ac¢ normalized and
may even contain negative values which may Balilt to interpret. Secondly, both LSA and
PLSA associate terms into latent topics and thus can haydégmy. However, LSA may not
work well to handle polysemy, as terms in LSA are mapped irgimgle point in the semantic
space. For PLSA, given a term the diterent values of conditional probabiliti€w|z) for
different topics give a natural explanation of polysemy.

Although PLSA has some advantages over LSA, it still hasredveeaknesses. A major
difficulty of PLSA is to be prone to overfitting because the numliggamameters of PLSA
grows linearly with the number of training documents [11peSifically, given a text dataset
with V terms andM documents, training PLSA witk latent variables (topics) requires to

www.manaraa.com



2.4. Topic MODELING 33

learnkV + kM parameters, which are linearly growing wikh, which in turn is usually very
large. The large number of parameters is due toktlagent variables explicitly linked to the
training documents$(zd) in Equation 2.16). To avoid the overfitting problem, LatBirichlet
Allocation (LDA) [11] proposes a dierent generative process that reduces the parameters to
kV + k which does not grow with the number of documents.

2.4.3 Latent Dirichlet Allocation

Latent Dirichlet Allocation (LDA) [11] is a statistical leaing algorithm for automatically de-
tecting topics in documents. Similar to PLSA, LDA also viezesh document as a mixture of
various topics. The dlierence is that LDA does not model the topic mixture in docusier-
plicitly. LDA treats the topic mixture as a k-parameter reddandom variable with a Dirichlet
prior (i.e., a distribution on multinomials). Specificallpr each document in the collection,
LDA assumes the following generative process:

(1) Randomly choose a per-document topic distribution tbasethe Dirichlet prior.

(2) Randomly choose a per-topic word distribution for eaghd based on another Dirichlet
prior.

(3) For each word in the document

(a) Randomly choose a topic from the distribution over tepic
(b) Randomly choose a word from the distribution over theabmtary given the sam-
pled topic.

Mathematically, the LDA model can be defined with the follog/inotations. We denote
the Dirichlet priors on the per-document topic distribatend per-topic word distribution as
a andpB. The topic distribution for documentis 6,. The word distribution for topid over
vocabulary is denoted a%. zj; is the topic for thetth word in documeni andwj; is thetth
word in documenj. Based on the generation process, we can write the joingpitity of all
known and hidden variables as

K M N
PW,26,¢;0.8) = | | Pei:B) | | POs: ) | | P@6))P(wylez,) (2.18)
=1 t=1

i=1

Estimating parameters of LDA by exactly maximizing the likeod of the whole data collec-
tion is intractable. A popular solution to this problem isuge approximation methods, such
as variational algorithms [11] and Gibbs sampling [46].

As a statistical graphical model, LDA shares similar adaget of PLSA over traditional
LSA method. Moreover, LDA is reported to be less likely owsirfig than PLSA in empirical
study. The Dirichlet priorer andg are assumed to be given. The parameters that LDA needs to
learn areP(Z60) andP(wl¢). Thus, there are totally + kV parameters which are much smaller
than PLSA.

We have reviewed three most popular topic modeling appesachthe literature. These
approaches have shown promising results in discoverirgghitbpics from text dataset. How-
ever, we argue that these approaches may not be suitabldtld.SThere are three main
reasons.

1. Unpredictable topics An important feature of topic modeling is to discover hidde
topics from text dataset. However, all of these approachesiasupervised learning
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methods. Without supervision information, the topics ek by these approaches may
be unpredictable and even unmeaningful and thus confuss. useaddition, although
some hierarchical extensions, such as hierarchical PL3A4][&nd hierarchical LDA
[10] have been proposed, the hierarchical topic structgezerated by these methods
are still unpredictable.

2. Unknown topic names All of the three approaches represent topics in a matheaiati
form, such as numerical vector in LSA or word distributiorPbSA and LDA. A serious
problem of such methods is the unknown topic names. Simplymgng the results
by topics without labeling the name of the topics could caad®d user experience.
Moreover, according to [21], assigning meaningful labelghe topics (clusters) is a
very difficult task.

3. Computational inefficiency The three approaches stem from solid mathematical back-
ground, such as SVD decomposition in LSA and graphical miodgtatistics. However,
when we apply these approaches to large-scale webpagetift@se methods may not
be dficient. For example, given a new webpage, PLSA needs to reeuBNM algorithm
on the entire text dataset to infer its topics. This coulddmesiow in real-world search
engines.

Due to the weakness we discussed above, we prefer to usevisapetext classification
methods for mining topics in universities. We will compahe ttopic mining performance
between supervised text classification methods and topitetimg methods in Chapter 6.

2.5 Summary

In this chapter, we have reviewed thredfelient machine learning methods for classifying
and searching documents. They are the supervised textfidassn methods, the learning
to rank methods and the unsupervised topic modeling methemtsclassifying documents in
SEEU, due to the drawbacks of the unsupervised topic mageliethods, we prefer to use
the supervised text classification methods, more spedyfithé hierarchical text classification
methods for hierarchical topic classification. For rankiloguments in SEEU, we will use the
pairwise learning to rank approach to rank documents in eatggory of the topic hierarchy.
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Chapter 3

Effective Hierarchical Webpage
Classification

In this chapter, we study the hierarchical webpage claasific problem. A major challenge
in SEEU is to automatically classify a massive number of veg@s into a topic hierarchy. An
effective hierarchial classification system is very imporfantSEEU. To deal with the chal-
lenges of learning large-scale webpage datasets, we farsihose anféicient webpage feature
extraction tool based on MapReduce. Secondly, we devel@pal@ hierarchical SVM clas-
sifier for dfective webpage classification. With extensive experimentse well-known ODP
(Open Directory Project) dataset, we empirically demaistthat our hierarchical classifi-
cation system is veryfiective and it outperforms the traditional flat classificatepproach
significantly.

The rest of this chapter is organized as follows. In Sectidn ®e describe the webpage
feature extraction tool for hierarchical webpage classiifon. In Section 3.2, we discuss the
algorithm to learn hierarchical classifiers. Section 3yBorés the experimental results on the
ODP (Open Directory Project) dataset. The last sectionatesia summary of this chapter.

The implementation of the hierarchical classification egstn Section 3.2 was in collabo-
ration with Da Kuang and Dr. Charles Ling. We jointly pubkshthis work in theProceeding
of the 22nd International Joint Conference on Artificialdhigence(IJCAI 2011) [67].

3.1 Webpage Feature Extraction

When we apply text classification algorithms on real-worlebpage datasets, the first thing
we need to do is to extract good text features from webpagethid section, we describe the
webpage features for learning hierarchical classificatnaalels. To deal with the challenges
of extracting text features from a large-scale webpagesdata.g., one million webpages in
the ODP dataset), we develop a distributed feature extwatdol based on the popular Hadoop
MapReduce platforfm

1The website of Hadoop projectlistp: //hadoop . apache.org/.
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3.1.1 Webpage Features

To extract text features from webpages, it is important toswter the tag structure of the
HTML source code. We use a webpage (see Figure 3.1) colléiedAmazon to describe
features extracted from HTML source. As we can see, HTML@&®uode usually consists of
a head part and a body part. Firstly, inside the head partxtvaot the title as well as two meta
texts, i.e., description and keywords. The three text featare very important as they describe
the theme (such as shopping in Amazon) and the content Bagks, Music and Games) of
the webpage. Secondly, for the body part, we simply treétatplain text by removing all the
HTML tags. In this thesis, we do not consider the primary HTkQgs such as heaélf>),
paragraph<£p>) and section<£div>), because in most websites, these tags are oriented toward
visualization rather than semantics [91]. However, forhemmdags €a>), we cannot simply
discard them because the text inside anchor tags is usealy@evant to thpointedwebpage
[14]. Therefore, we also use the anchor text feature foptiiatedwebpage. In addition, we
extract text from the webpage URL (not the links inside theham tags) because the URL of a
webpage also contains useful informatfofhus in total, we use six text features for webpage
classification. They are tabulated in Table 3.1.
<html>
Title heady <title>Amazon.com: Online Shopping for Electronics, ...</titles
= = " <{meta Mafes"des{Tiption™ fOnTent="0A1iMe SHOpPidg Trdm The earfhdF3T;s — -1

[)escriptior]l biggest selection of books, magazines, music, DVDs, videos, electronics, computers, |

LEHEEEL_;;;_:LL ____________________________ ]
<meta name="keywords" content="Amazon, Amazon.com, Books, Online Shopping,

KeVVV0rdS | Book Store, Magazine, Subscription, Music, CDs, DVDs, Videos, Electronics, Video
<script type="text/javascript”>

</script>
</head>
Body I=eey> ~ ~~ " T T T oo
e e e e e . — — — — ——— ————
Il(div class="inner"><div class="s9hl" ><a href="/gp/product/Be@7P4VONC/ref=s9 |I
Anchor |_pop_gw_g147_..."><span class="s9TitleText">Samsung Galaxy Tab 2 (7-Inch, Wi-Fi) |l

<span class="s9Price red tl4">$199.ee</span> - T |
| </divs</divs I
|

</html>

Figure 3.1: A simplified HTML source code from Amazon homegag

Table 3.1: The six text features of a webpage. They are UR&, tiescription, keywords, body
and the anchor text.

ID | Description

URL

title

description in meta tag

keywords in meta tag

body

anchor text from inbound hyperlinks

OO, WNBE

2For example, the linkttp: //www.amazon. com/books-used-books-textbooks/ . .. points to the book
department of Amazon. It contains useful words includiogks used bookandtextbooks
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3.1.2 MapReduce based Feature Extraction

A webpage dataset is usually very large. Afiotent feature extraction implementation is
non-trivial. Simple sequential scanning over the entiregvaph could be too slow for a large-
scale dataset. In this thesis, we build the feature extrat¢tiol based on the popular Hadoop
MapReduce platform.

We briefly describe the MapReduce programming model. MapB=ds a parallel pro-
gramming model for processing large-scale datasets. InERdduce development, the com-
plex low-level system programming, such as data communitatoad balancing and fault
tolerance are taken over by the MapReduce platform. Deeetopnly need to focus on the
implementation of high-level algorithms by using the sienplapandreducefunctions [32].

In a typical MapReduce program, the main computation preeedan be implemented as a
series of data manipulation on key-value pairs. Specifictde main program splits the prob-
lem into many small subproblems. For each subproblem, theRdduce platform launches a
mapfunction that processes the subproblem and outputs intBateeresults as a list of key-
value pairs. When all themapfunctions are finished, the MapReduce platform reorgarailes
the intermediate key-value pairs into many value lists ehiital keys. For each value list, a
reducefunction will be launched to process it and output a singhge-ka&ue pair as the final
results.

We implement the feature extraction tool based on the Map&egrogramming model.
Figure 3.2 shows an example of MapReduce pseudo-code f@cirg anchor text. It con-
tains amap function and areducefunction. The entire webpage dataset is split into many
webpages by URLs. For each webpage,rttafunction extracts and emits pairs of (“hyper-
link”, “anchor text”) from HTML source code. After all thenapfunctions are finished, the
reducefunction combines the list of anchor text for a URL to form fhmal anchor feature for
a webpage as (“hyperlink”, “merged anchor text”). The cazlextract the other text features
is simpler than extracting anchor text. They only hawveapfunction which just extracts the
in-page text.

map (String url, String html):
//url: the URL of a webpage
//html: the HTML source
for each hyperlink in html:
EmitIntermediate (hyperlink, anchorText);

reduce (String hyperlink, Iterator anchorTextList):
//hyperlink: the URL of a webpage
//anchorTextList: a list of anchorText
String anchorFeature = "";
for each anchorText in anchorTextList:

nmon

anchorFeature += + anchorText;

Emit (hyperlink, anchorFeature);

Figure 3.2: The MapReduce pseudo-code for extracting arekbfeature.
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3.2 Hierarchical Classification

A major challenge in building search engines with hieragshs to automatically classify a
massive number of webpages into various hierarchies. fsiction, we use the top-down
hierarchical classification approach (see review in Chid for training hierarchical classi-
fication system.

Top-down Hierarchical Classification Algorithm

Given a predefined topic hierarchy, we build one binary classifier on each category+of
The positive and negative examples for each category agetedlocally [106]. Specifically,
for each categorg € H, let T (c) denote the direct parent categorycodnd E(c) denote the
examples belonging ta Then the positive training exampleso€an be defined &br,(c) =
E(c)® and the negative training examplescatan be defined abr_(c) = Tr.(T (c)) - Tr.(c).
As the negative training examples are only selected fronptsitive examples of the parent
categories (locally), the classifier would nottau from the serious imbalance problem [58].

In prediction phase, the top-down approach classifieswgsttamples in a top-down man-
ner. Specifically, given a testing example, the classifietiseatop level firstly output its predic-
tion probabilities. After that, at each category, if thelpability of the example is larger than
a threshold (e.g., 0.5), the example will xursivelypushed down to its lower-level child
categories for further prediction until reaching the leatiegories.

Tuning prediction thresholds in the top-down approach ry w@portant. Too small pre-
diction thresholds will cause examples wrongly predicteih ideeper categories while too
high prediction thresholds will cause examples to be bldckietop level. To tune the op-
timal prediction thresholds, we use the popular SCut [12P] Algorithm. Its basic idea is
to tune the threshold of each category on a validation sgt, (#0% training examples) un-
til optimal performance of the classifier is obtained forttbategory (on the validation set).
In our classification system, we tune the prediction thrislod each category in the set of
{0.3,0.4,0.5,0.6,0.7}.

We use linear Support Vector Machine (SVM) as the base @lisdecause the high di-
mensionality of text data usually results in the datasendpdinearly separable [112]. The
popular LIBLINEAR [41] package is used in our implementatido obtain prediction prob-
abilities from SVM, we implement the famous Platt’s caliiiva [88] to output calibrated
probabilities by sigmoid function,

1

PO =10 = 1 oo 0+ B)

(3.1)

where f(X) is the SVM output of example; A and B are the parameters learned by Platt’s
calibration.
Feature Preprocessing and Selection

We use the bag-of-words model to represent the text datdn d@miment is treated as a vector
of word features with THDF weighting. Before the construction of the TIBF word vector

3For the root category, all the training examples are pasitiv
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of each document, we need to remove stop words (g .a, and) and rare words (e.g., words
occurring in less than three documents) as they are not luseflearning a classification

model. In addition, as we are mainly learning the Englishutoents, words with the same
meaning can appear infterent forms, such dgarning learn andlearns We use the Porter

Stemming [89] algorithm to normalize words to their steng(dearning— learn).

The feature space in the text classification dataset is lysualy large. Training SVM
classifiers on hundreds of thousands of documents in a higérdiional feature space requires
a great number of computational resources. To reduce catioal cost, we use the DF
(Document Frequency) [42] feature selection algorithmdlea a small portion of relevant
features. Specifically, the DF algorithm assigns a scorat¢t &ord in the training data. The
DF score is calculated as the number of documents contathisgvord. The top ranked
features by the DF scores can be used as useful featuresasifation. Although the DF
algorithm is very simple, it has been shown that the the DBréalyn is a reliable measure for
selecting informative features [123].

Time Complexity

We analyze the time complexity of training the hierarchi8%M classifiers. Let us consider a
dataset that contaima examples distributed in a hierarchy of depthd. The feature size of
the dataset is.

We use the top-down approach to train a linear SVM classifieaeh category of{. It has
been proved that the time complexity of training a linear Syidws linearly with the number
of training examples and features [63]. The time complesitghe DF feature selection is
also linear as we only need to scan the training set once tgutarthe DF scores for all
words. For the SCut algorithm, estimating the predicti@sifmr each threshold value requires
classifying all the examples in the validation set. As weyaampare a few threshold values on
a small portion of training examples (e.g., 10% of the tragrset), the complexity of SCut can
be approximately considered as linear. Thus, the total tomeplexity of hierarchical SVM
classifiers is the sum of the complexity of training all theetar SVM classifiers,

d |Hil

Tuan = ), ), 0(myn) (3.2)

i=1 j=1

where|#;| is the number of categories at the deptim; is the number of training examples in
the jth category at depih

To simplify the derivation of time complexity in a hierarchye make two assumptions
here.

e Assumption 1. We assume that each intermediate categoeyunaied branching factor
b (i.e., a fixed number of child categories).

e Assumption 2. We assume that we are facing the mandatofyete classification

[9, 106] where each example in the training set is categomzea single path from the
root to a leaf category.
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Theorem 3.2.1 (Complexity of Hierarchical Classificatiorn(piven a dataset containing m ex-
amples distributed in a hierarchy of depth d with n featutbg, time complexity of training
hierarchical SVM classifiers is

d |Hil

Tirain = Z Z(mjn) = dbQ(mn)

i=1 j=1

Proof We use mathematical induction to prove this. Given a hiésaof depthd, we want to
proveTain(d) = dbQ(mn).

For a hierarchy of depth 1, we tramSVM classifiers on the entire training set. Thus, we
can deriveT,in (1) = bO(mn). We suppose thaif,i,(d) is true for a hierarchy of deptth We
need to prove thaky,n(d + 1) is also true for a hierarchy of depdh+ 1.

Given a hierarchy of deptl + 1, we know that the complexity of training hierarchical
SVM classifiers on the tog levels isdbOQ(mn). Consider a category at depthd, we use
Eq; to denote the positive examples belonging to it. Accordmthe top-down approach, for
each of its subcategories at depth 1, the number of training examples is exadgy; (i.e.,
positive examples from the parent category). Based to Apsom1, we can derive that the
total time complexity for its child categoriest€)Egjn). Therefore, the total time complexity
at depthd + 1 is bZ'jt{‘i" O(Egjn). According to Assumption 2, each training example must
pass only once through a category at deptihus, the total examples passing through depth
dis X4 Ey; = m. Therefore,b ¥4 O(Eqjn) = bO(mr). Eventually, we prove that the
time complexity of training hierarchical SVM classifiersr fa hierarchy of deptid + 1 is
Tyain(d + 1) = dbO(mn) + bO(mn) = (d + 1)bO(mn). |}

Next, we derive the time complexity of the flat approach fomparison. In the flat ap-
proach, we ignore the hierarchy structure and train SVMsifiess at all the leaf categories. For
each leaf category, a SVM classifier is trained to distingthat category from all the other leaf
categories. Specifically, the positive training exampliesach leaf categorg can be defined
asTr,(c) = E(c) and the negative training examplescafan be defined abr_(c) = D-Tr,(C)
whereD is the entire training set. Thus, the time complexity of tiaé dpproach can be simply
derived a?O(mn) (b is the total number of leaf categories#). We can see that the hier-
archical SVM classifiers are exponentially faster than theaibproach. For example, consider
a hierarchy of four levels with branching factor of five. Thatfapproach has to train 625
(5% leaf categories at the 4th level) full SVM classifiers (on émtire dataset) while the time
complexity of the hierarchical SVM classifiers is just eqléent to train 20€ 4 x 5) full SVM
classifiers.

We study the time complexity of predicting a testing exampBven a testing example
predicted from the root to a leaf category, the hierarch®&M classifiers only use the SVM
classifiers attached to the categories of the predictioh. plat other wordsp classifiers are
used at each level of the prediction path. Thus, its time dexity is

Tiest= dbQ(n) (3.3)

For the flat approach, as each classifier at a leaf categorybraussed, its time complexity is
b?O(n). We can see that the hierarchical SVM classifiers approaelyain far morefécient
than the flat approach.
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Parallel Speed Up

We have proved that the hierarchical SVM classification idigon is much faster than the flat
approach. However, in a real world application with milkoaf training examples in large
hierarchies, it could be still slow to sequentiality traiamy SVM classifiers.

Although we can also use MapReduce for parallelization, vedep to use OpenMP) a
popular High Performance Computing library, because itngimany SVMs is a computation-
ally intensive task rather than data intensive task wherpRéauce is especially suited for
[78]. Thus, similar to [81], we also develop a parallel maehlearning system on a small
cluster of PCS. The MPI pseudo-code of training hierarchical SVM classifisrpresented in
Figure 3.3. Itis based on the classic Magkave parallel computing model. Simply speaking,
each worker requests a job (category) from the master, antstthe SVM classifier for that
category. This process is repeated until all the jobs arswoed. In an ideal case, given a
cluster of p processors, the time complexity of training hierarchiceMsclassifiers can be
further reduced to

Tirain = p_ldqun) (3-4)

if rank != O:

/* Worker module:/

while true:
//request a category from the master
MPI_Send(req, 0);
MPI_Recv(category, 0, stat);
//quit if the category is empty
if categoryNull:

return ;
//Top—down building training set
TrSet = Localize(Data, category);
//Do feature selection on the training set
TrFSSet= FeatureSelection(TrSet);
// Train a SVM model
SW = TrainSVM(TrFSSet);
//Use SCut to tune the optimal threshold
Threshold = SCut(TrFSSet);
else:

/* Master module (rankQ)s=/

//schedule categories to workers

for category in Hierarchy:
MPI_Recv(req, MPIANY_SOURCE, stat);
MPI_Send(category , stat.source);

// All jobs are finished, tell each worker to stop

for worker in pool:
MPI_Recv(req, MPIANY_SOURCE, stat);
MPI_Send (Null, stat.source);

Figure 3.3: The MPI pseudo-code for training hierarchicédvclassifiers.

“http://www.open-mpi.org
51t consists of four quad-core PCs each with four 2.4 GHz CPtdsand 3GB memory.
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3.3 Hierarchical Classification Experiments

In this section, we describe the experimental dataset andumbd an empirical study on the
classification performance of hierarchical classificatiethods.

3.3.1 Experimental Dataset

We use the well-known ODP (Open Directory Project) hiergrab our experimental data.
ODP is a human-edited web directory where human expert@ganillions of webpages
into a complex topic hierarchy with a maximal depth of 14. \Weact a meaningfudi-level
topic hierarchy from the original hierarchy of ODP, sincesitlifficult to train highly accurate
classifiers at the deep levels of the hierarchy [81]. Beside®ry deep hierarchy is not con-
venient for users to browse. To have a broad coverage of contopacs, we select 11 out of
the total 16 top categories in the ODP hierarchy. Theyfatg BusinessComputersHealth,
Home RecreationReferenceScienceShoppingSocietyandSports After the data collection
and cleaning, we obtain 1,047,560 webpages distribute@cétegorie§. Here, we report
the statistical information of our topic hierarchy at eaevel in Table 3.2.

Table 3.2: The statistical information of the topic hietarat each levelc is the total number
of categoriesr is the average positive class ratio over all documenmts.the average number
of examplesf is the average number of distinct words.

Level ¢ r n f
1 11 0.094 1,047,560 755,718
2 99 0.091 104,039 254,606
3 499 0.103 11,026 66,565
4 53 0.106 7,715 68,654

3.3.2 Evaluation

To evaluate our classification system, we conduct five-foteb€ validation experiments on
the ODP dataset. Specifically, we randomly split the daiasefive subsets (folds) with equal
size. At each round of cross validation, four folds are usetr&ining (with 838,048 examples)
and the rest is retained for testing (with 209,512 examplé#)en training SVM classifiers,

we use the default parameters (&= 0) of LIBLINEAR. In the testing phase, we report the
average F1-score [121] at each level of the hierarchy.

Comparing the Top-down Approach and the Flat Approach

We firstly compare the performance of the hierarchical SViMe (op-down approach) with
the traditional flat SVMs (the flat approach). For both apphes, we set the feature number
to 50,000, and set the prediction thresholds for all caieg@s 0.5. The SCut algorithm is not
used for the top-down approach.

5Although we only choose four-level categories, the webpageeep levels of the ODP hierarchy are popped
up and collected in the categories of the fourth level.
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Figure 3.4 presents the results. We can see that the top-dppnoach has a clear advan-
tage over the flat approach. Generally speaking, the dekpdevel is, the more significant
improvement the top-down approach is. The largest imprevdgroan be observed at the 3rd
and the 4th levels. We find that for the flat approach at thesddwels, the average positive
class ratios are less than 0.001, much more skewed thanphdoten approach (i.e., about
0.1). With serious imbalanced class distribution, it isyvdifficult to learn a good classifi-
cation model for the flat approach. In addition, we noticd tha flat approach is far slower
than the top-down approach. On average, it takes about s b finish training while the
top-down approach uses less than one hour. For the largeerBitb) of leaf categories in
the ODP hierarchy, the flat approach trains SVM classifiereentiretraining set while the
top-down approach trains SVM classifiers onlyexponentially smalleportion of examples.

0.90

0.80

0.70

' B Top-down
M Flat
0.50 -
0.40
030
1 2 3 4

Level

Figure 3.4: The average F1-score dfelient levels by the top-down approach and the flat
approach.

Fl-score
o
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Optimal Thresholds in Hierarchical SVM classifiers

Secondly, we study the thresholds in our hierarchical SVassifiers. In this experiment, we
compare the SCut method with the fixed threshold value 0.5nawon prediction threshold
in text classification. For the SCut method, we tune the tiolkeisof each category on a valida-
tion set (e.g., 10% randomly sampled training exampled) tha optimal performance of the
classifier is obtained for that category on the validatidn se

We repeat the five-fold cross validation experiments forhiggarchical SVM classifiers,
and report the results in Figure 3.5. We can see that the SEtitaah consistently outper-
forms the fixed threshold method at all levels. It means th&ierarchical classification, it is
important to tune the prediction thresholds to achieve klghsification performance.

It is also worthy to analyze the distribution of the tunedetiirolds by the SCut method.
We plot the distribution of optimal thresholds tuned by tli&uSmethod at all levels in Figure
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Figure 3.5: The average F1-score dfelient levels by the SCut thresholds and the fixed thresh-
old 0.5 for the top-down approach.
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Figure 3.6: The optimal threshold distribution affdrent levels by the SCut method.
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3.6. We can see that at the top two levels, most of the thrdsiadlies are less than 0.5 while
at the 3rd and the 4th levels, larger thresholds (i.e., Ocb(ari) are more often used. This
is reasonable. For the top level, a small threshold valuepcesn more examples down to
the lower levels, and reduces the class imbalance problaeaper levels. Thus, the recall
at deeper levels can be improved. In addition, this alsosh&lpesolve the blocking (false

negative) problem [109] in hierarchical classification. eOnay say that this may introduce
false positive examples into the deeper levels. To reduck strors propagated from the top
level, the SCut method increases the thresholds for soregaad¢s at the deeper levels. This
helps to maintain the precision. As the SCut method can invgboth precision and recall for

the large number of deeper-level categories, the overadidéte will be eventually improved.

Effect of Feature Number in the Hierarchical SVM classifiers

Next, we study theféect of diferent feature numbers on the classification performandeeof t
hierarchical SVM classifiers. The feature numbers usedignekperiment are 5,000, 10,000,
50,000 and 100,000. Figure 3.7 plots the F1-score at alldeweler diferent feature numbers.
We can see that increasing the number of selected featunempaove F1-score consistently
at all levels. This is as we expected as SVM learns more amyraith a large number of
relevant features [60].
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Figure 3.7: The average F1-score dietient levels by dierent feature numbers.

We also analyze the correlation between the running timel#gfetent feature numbers for
the hierarchical SVM classifiers. Figure 3.8 plots the ayerraining time and testing time
under diferent feature numbers. We can see that the training timelisteacreases along
with the growth of feature numbers. This is because a largerhber of features will make
the SVM learning algorithm consume more computationaluss®and thus become slower to
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converge. However, for testing time, the correlation betwkeature number and running time
is not clear. The running time is mainly decided by the nundf@xamples due to the sparsity
of features in text documents [41]. In fact, although the QlaRset has more than one million
distinct words, we find that the average number of distinctdsger document is just 198.
From this analysis, we believe that 50,000 features are gaodgh for the hierarchical SVM

classifiers when applied for a hierarchy of medium size (&igh several hundred categories).

3500

3000 et
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1500 / —+—Train

/ -B-Test

1000 .\.—/.___.

500
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0

5000 10000 50000 100000
Feature Number

Figure 3.8: The average training and testing time of theanedtical SVM classifiers under
different number of features.

Throughput of the Hierarchical SVM classifiers

Finally, we analyze thefciency of the hierarchical SVM classifiers. From Figure 3v@,
can see that the training and testing of the hierarchical S\NAdsifiers are quitefiécient.
For 50,000 features, the average training time at one folcrads validation (with 838,048
examples) is 2,350 seconds. The average testing time oro@h€09,512 examples) is 904
second<. The throughput (number of documents classified per secdnol)roclassification
system is 231 (20953204), which is quite good considering only a small clusteP@fs is
used. Since both the training and testing processes carrfoerped dt-line, we believe that
the scalability of the hierarchical classification for eglasearch engines is feasible.

3.4 Summary

In this chapter, we develop afftective hierarchical classification system for large-seab-
page classification in a topic hierarchy. According to oupezimental results on the well-
known ODP dataset, we empirically demonstrate that oualgéical classification system is
very dfective and outperforms the traditional flat classificatippraaches significantly.

’In our previous paper [67], we do not count the time of dj& &nd network /0. This could be unrealistic
for real world systems. In this thesis, we count the totacaten time (including disk/lO and network/O) of
running a MPI job on our cluster.
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Chapter 4

ERIC: Enhanced Ranking by hlerarchical
Classification

Traditional keywords-based web search engines rank dausraly based on the text match-
ing between a query of keywords and the indexed documendspage importance metrics.
However, in search engines with hierarchies, we also neeambnsider the topic relevance
in hierarchies. In this chapter, we study the problem ofgragéng hierarchical classifica-
tion into keywords-based search engines. We propose a manking framework, called
ERIC (EnhancedRanking by herarchicalClassification), that improves the ranking quality
of a search engine by hierarchical classification. With msitee experiments on four TREC
(Text REtrieval Conference) web search datasets, we esafiyridemonstrate that our ranking
framework with hierarchical classification outperforms flat keywords-based search meth-
ods significantly. To the best of knowledge, this is the firstkithat evaluates the performance
of ranking in hierarchies on the TREC datasets with satigfyesults.

The learning to rank experiments in Section 4.3 are done BithCharles Ling and Dr.
Huaimin Wang. This work was included in the submission tdEteE Transactions on Knowl-
edge and Data EngineerifdEEE TKDE) [75].

4.1 Introduction

In traditional keywords-based web search engines, sewyatbcuments is usually consid-
ered as a similarity match problem between a query of keysvardl the indexed documents,
boosted by page importance metrics (such as PageRank [&&]ally, the matching algorithm
is based on the TOF weighting with human crafted parameters, such as thelpoBM25
[94] ranking methods adopted by most search platforms.

As user queries are usually very short and ambiguous [1G%jnjple keywords match may
fail to capture the true similarity between queries and tltex documents. For example, if
users want to find information about “active learning” (ae@sh field inComputer Scienge
they could search keywords “active learning” in a flat seaebine, such as Google. Due to
the ambiguity of the short phrase “active learning”, mosthef top ten results are related to
Educationresearch. If we combine more keywords, such as “Computengef, webpages
about “active learning” without the words “Computer Sciehmay be filtered out, and thus,
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users may miss some important webpages. However, in a seagthe with hierarchies,
such as SEEU, if users select the category “Computer Scieémdke topic hierarchy while
searching “active learning” as the keywords, the top terkedrresults will be exclusively
related toComputer Scienceesearch and the results without the words “Computer Sefenc
will still remain.

The major challenge of integrating hierarchies into a deargine is to classify and rank
a large number of webpages into hierarchies. In previouptehs, we have studied the prob-
lem of large-scale hierarchical webpage classification.thla chapter, we study the prob-
lem of using hierarchical classification to improve the iagkperformance of search engines.
We propose a novel ranking framework, called EREhlfancedRanking by Hherarchical
Classification) that integrates the hierarchical clasdifioaprobabilities into the ranking sys-
tem of search engines with hierarchies. In this framewokgevelop several ranking features
to capture text similarity between queries and documestgjedl as topic correlation between
user selected categories and the indexed documents, agdatd them into a learning to rank
algorithm. With extensive experiments on four TREC (Textfilval Conference) web search
datasets, we empirically demonstrate that by seamlessygriating hierarchical text classifi-
cation and ranking methods, our framework can boost seaigine's ranking quality signifi-
cantly. To the best of knowledge, this is the first work thatleates the performance of ranking
in hierarchies on the TREC datasets with satisfying results

The rest of this chapter is organized as follows. In Secti@nwe discuss the challenges of
integrating hierarchical classification into the rankiagg propose a novel framework to tackle
the challenges encountered. In Section 4.3, we conduatgExteexperiments to evaluate the
effectiveness of our approach, compared with the state-e&ithitat ranking methods. The
last section presents the summary.

4.2 Integrating Hierarchical Classification into Ranking

When we integrate hierarchical classification into searairees with hierarchies, two chal-
lenges need to be solved.

e The first challenge is how to define a commonly accepted taprairchy for the applica-
tion domain and #ectively classify the massive number of webpages into teehchy.

e The second challenge is how to desidieetive features for a ranking system. Improper
features may even degrade the performance of a rankingsyste

In this section, we will propose a novel rank framework tktadhe two challenges.

4.2.1 General Framework

We propose a novel ranking framework called EREDIljancedRanking by herarchical

Classification) for search engines with hierarchies. Figufiepresents the main idea of our
framework. Simply speaking, our framework can be consii@®a feature processing net-
work which transforms each query-document pair into thr¢keibnt types of features for a
ranking system. The key and novel idea of our framework istimduce the topic features for
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Figure 4.1: The framework for integrating hierarchicalsslfication into the search engine
with hierarchies.

a ranking system. These features are proposed to captutepticecorrelation between user
selected categories in the hierarchy and the indexed daasmk is computed based on the
categories selected by users and the estimation of togidadigon by the integrated hierarchi-
cal classification system (the square box with caption “@dfierarchy” in Figure 4.1).

In the following subsections, we will firstly discuss the imfeatures due to their im-
portance in our framework. Secondly, we briefly describedtieer two text based features
(Document Features and Query-document Features in FiglLireMnally, we discuss how we
integrate the three types of features into the ranking syste

4.2.2 Topic Features

How can we deal with the two challenges when integratinganaical classification into
search engines with hierarchies?

The first challenge is to define a reasonable and commonbpéad topic hierarchy. In
fact, there already exist some high-quality topic taxoreswin the web, such as the Wikipedia
topic hierarchy and the ODP (Open Directory Project) category hieratcijue to the large
number of human editingforts, the quality of these topic hierarchies would be mudkebe
than the topic hierarchies extracted by ad-hoc methodsabs.tdhus, we can directly build
the topic hierarchy by reusing these existing taxonomies.

For example, for general-purpose web search, we can use@feHirarchy for topic
classification. ODP is a human-edited web directory wheradruexperts organize millions
of webpages into a complex hierarchy. The ODP hierarchyrsaadroad scope of common
topics on the web, includingrts, BusinessComputersHealth Home RecreationReference
ScienceShopping Societyand Sports With the high coverage of common topics, we believe
that using the ODP hierarchy to classify webpages in a genetasearch engine is feasible.
As we have already presented the details of ODP dataset aruedtarchical webpage clas-
sification algorithm in Chapter 3, we will mainly discuss tiopic features derived from the
hierarchical classification results in this framework.

Ihttp://en.wikipedia.org/wiki/Category:Main_topic_classifications
%http://www.dmoz.org/
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In our framework, we use two vectors to denote the user sslazzdtegories and the topic
distribution of indexed documents. Consider a hierarghyf n categories (topics). We use
a vectorT = (T4, T,, Ts,..., T,) to denote the selected topics by users whigre 1 means
the topici is selected whilel; = 0 means it is not. In addition, based on the hierarchical
“IS-A” relations, for each ancestor toplcof the selected topic, we can also sefy = 1.
For the indexed documents, we receive a document topiakilison Py generated from the
hierarchical classification system. The topic distribnti® a vector oh probability values for
all the topics in the hierarchy. It should be noted that tlassification of indexed documents is
performed d&-line, and the results (topic probabilities) are directigéxed into search engines
for fast online computation of topic features.

Now, we derive the topic features based on the topic seledtiand the document topic
distributionPy. A simple idea is to only use the topic probability at the mgsécific topic
selected by users. However, we argue that such a simple thgghores the important hierar-
chical information. In our framework, it could be more uddtudefine the topic features for
each level of the hierarchy,

FO (T Pa) = Z T(i)P,(i), whereP,(i) = Pq(i) X ﬂ Pa(K) (4.1)

ieH, kean(i)

where | is the jth level of the hierarchyl; is the set of topics at the levg] an(i) is the set
of all the ancestor topics of P'd(i) is the adjusted probability for topicby multiplying the
probabilities of all its ancestor topics. We can see thatlthiel-based topic feature is not only
based on the topic probability at the selected specific oagdgut also the probabilities of all
the ancestor topics. Thus the hierarchical informatiorotdst.

We use an example to show how our topic features are deriaeckia-world search engine.
Figure 4.2 shows an example of searching for “skin care” utideecategory hierarchy of “All”
— “Shopping” — “Health” in the ODP hierarchy. In this case, the topic setetby the user
isT = (T(Shopping)= 1, T(Health)= 1). For an indexed documedf we compute the topic
features for each level of the hierarchy as

1. 1stlevel.
Fgg,ic(T, P4) = T(Shopping)x P4(Shopping)

2. 2nd level.
Fi)o(T, Pg) = T(Health)x Py(Health)x Py(Shopping)
For the 3rd and the 4th levels, as no topics are selectedptinesponding topic features will
be zero.

It should be noted that Bennett [8] also proposed to integtad category probabilities into
the ranking. However, their problem setting is quit&atient to ours. In their setting, they
assume that no explicit hierarchies exist for users. They ba use the query classification
approach [13, 105] to estimate the categories for queriase O the dificulty of accurate
query classification, the ranking improvement of their aggh may not be stable [8]. On the
other hand, in our approach, this challenge is relieved assusn directly choose appropriate
categories in the hierarchies.
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Figure 4.2: Searching for “skin care” under the topic hiengr“Shopping=—“Health” in the
ODP hierarchy. This is performed in a small demo of the SEEAJcteengine called SEE.

4.2.3 Text-based Features

The other two types of text-based features are documeniré=aand query-document fea-
tures. We tabulate these features in Table 4.1. The mearfidgaument features can be
self-explained in the feature description. For the impartpuery-document features, we give
a formal description on how we compute them.

In our framework, we consider six text fields in a webpage.yldreURL, title, description
keywordsbody textandanchor tex{see how we extract them from webpages in Chapter 3). To
simplify the discussion, we denote these field$;4% < i < 6). Give a queryjand a document
d, we list the formulas to compute the query-document featurdable 4.1 as follows:

e 8. Number of matched words in a field

F#matched Woroéq, d(fi)) = |{W € q N d(fi)}| (4-2)

e 9. Ratio of matched words in a field

. we gnd®
I:%matched WOI’Oéq’ d(f')) = W (4-3)
e 10. Sum of TF scores of matched words in a field
Fre(@.d™) = > TF(w,d®) (4.4)

wegnd(fi)
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Table 4.1: The text based features in our framework. Thedfiekked to compute query-
document features include URL, title, description, keydgibody text and anchor text.

ID Feature Type | Feature Description
Number of slashes in the URL
Document Length of the URL
features Number of distinct words in a field
Number of total words in a field
Number of inlinks
Number of outlinks
PageRank score
Number of matched words in a field
Ratio of matched words in a field
Sum of TF scores of matched words in a field
Sum of normalized TF scores of matched words in a field
Sum of IDF scores of matched words in a field
Sum of TFIDF scores of matched words in a field

Query-document
features

el
NEhBoo~N~NoahrwNek

[EEN
w

e 11. Sum of normalized TF scores of matched words in a field

: 1
I:Norm TF(q, d(f')) = |{

e d D TFRw,d) (4.5)

wegnd(fi)
e 12.Sum of IDF scores of matched words in a field

Fior(q,d™) = >" IDF(w, D) (4.6)

wegnd(fi)

e 13. Sum of THDF scores of matched words in a field

Freioe(,d®) = > TR(w,d®) - IDF (w, D®) (4.7)

wegnd()

where T F(w, d™) is the term frequency of the matched tewrnin the document fielai(™;
IDF (w, D(") is the reverse document frequency of tewim all the documents with text feature
fi.

To help readers understand how these features are actaédlyated, we show the com-
putation of the sum of THDF scores as an example. Consider a query “intelligenesyst
and a document with title “intelligent system and technglogAfter we remove stop words
and apply stemming in both the query and the document, theo$difa IDF feature for itditle
field is computed as:

Freipe(, d™) = TF(intellig, d*?) x IDF (intellig, D)
+ TF(systemd®®)) x IDF (systemD®)
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4.2.4 Ranking Strategy

In this subsection, we present how we integrate the thresstgpfeatures into a ranking system.
The three types of features are all important for the finakirag It is reasonable that the final
ranking score is defined as a linear function of those feature

Seric (g, d) = \TV_D) . FD(d5 +W_gp- - Faop-(0, d5 + VTT) -F+(q, d; (4.8)

Wherem is the vector of document-only featureE;Q,D>(q,d3 is the vector of query-
document features for all the six text fields; &ndq, dS is the vector of topic features. Param-
etersVT/B, W _ op> andVTT) are the weights for each feature respectively.

We can see that the traditional ranking methods, such asahelirectory and the keywords-
based search, can be derived from the Equation 4.8. Fifatlsers simply browse a topic cat-
egory without any keywords (i.eq, = 0), F<qp-(Q, dS will be constant for all webpages. Our
ranking system will return the most popular (Iam score) and highly category-relevant

(largeF+(q, di score) results at the top. In this case, our ranking systcorbes a web direc-
tory, and people can browse the most popular webpages intepichof the whole hierarchy.

Secondly, if users do not choose any category (T.e=, 0), F+(q, d) will become constant for
all webpages. Our ranking system will rank all webpages baked on the document features

(FD(dS) and query matching featureS.g p-(q, d;). In this case, our ranking system acts as the
same as the flat search method. Users can just search theddgstuments by keywords.

We use RankSVM [53], a popular learning to rank algorithmlgern the weights of our
ranking function. A detailed review of learning to rank aiigoms can be found in Chapter 2.3.
RankSVM learns the ranking model by minimizing the pairwass (i.e., a relevant document
is ranked lower than an irrelevant document) [53, 62]. Treendy proposed VM2 [63]
package can learn RankSVNrieiently on very large datasets.

In this section, we have presented how we integrate the pilities of each webpage
predicted by hierarchical classifiers into our novel ragkaystem. In the next section, we
will report the evaluation results of our new ranking metlsodhpared with the traditional flat
ranking methods.

4.3 Evaluation of Hierarchical Classification Enhanced Rak-
ing

In this section, we conduct experiments on the well-knowiETRText REtrieval Conference)
datasets to compare our ranking algorithm with traditidl@lranking methods.

3In our previous paper [67], we propose a simple product bessgking function, i.e.S(q, d, ¢) = Fo(q, d) X
Fp(d) x Fc(c, d). In fact, we can transform this product equation into oanfework by taking logarithm on both
sides.
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4.3.1 Experimental Dataset

We use TREGweb search datasets to evaluate our ranking method. TRESst®0f a series
of workshops focusing on flerent information retrieval research tracks. In our expents,
we choose the four latest web track datasets in our expetam&hey are from TREC 2009,
2010, 2011 and 2012 web trackJheir statistical information is shown in Table 4.2.

Table 4.2: The statistical information of the TREC datasets

Dataset | Documents Unique Words
TREC 2009| 23,601 205,135
TREC 2010 25,329 218,068
TREC 2011| 19,381 164,516
TREC 2012| 16,055 124,950

For each TREC web track dataset, TREf=os a list of 50 ad-hoc search tasks with rel-
evance judgement of documents related to each task. Spdgjfieach task consists of a
description of the intended search topic and a suggestay ¢keywords) (See a sample in
Table 4.3). The relevance judgement of each document iswegbint scale as2,0, 1, 2, 3
where -2 means spams and 3 means highly relevant resultsaEbitask, the participants will
run their own retrieval systems against the query, and sidbhsit of the top-ranked documents
for evaluation.

Table 4.3: A sample of ad-hoc search tasks from the TREC 2@t0tkack.

No | Category Phrases

1 Find information about horse hooves, their care, and deseaishooves| horse hooves

2 Find events sponsored by the Association of Volleyball &sionals. | avp

3 Find locations and information of Discovery Channel stapd their| discovery

products. channel

store

4 Find information about iron as an essential nutrient. iron

5 Find information about jobs in Connecticut. ct jobs

6 Find information about penguins. penguins

7 Find information about computer worms, viruses, and spgwar worm

8 Find information about Flushing, a neighborhood in New YGity. flushing

9 Find information about PVC pipes and fittings. pvc

10 | Find beginners instructions to sewing, both by hand and bshma. | sewing
instructions

Given a queryg and a documerd in one of the TREC datasets, we need to calculate the

4The home page of TREC Isttp://trec.nist.gov/.

SWe can only download the ground truth relevance judgememh ffREC athttp://trec.nist.gov/
data/webmain.html. The actual webpages are provided by CluwebQ9 project. Wenaki search API to
download themlndri can be visited dittp: //boston.1ti.cs.cmu.edu/Services/clueweb®9_catb/ (au-
thentication required).
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features (see Section 4.2) for our ranking framework. Thezdhree types of features we need
to calculate.

¢ Query-document features. We can easily calculate thendlmsthe formulas we list in
Section 4.2.3.

e Document features. We can compute most of them based onahedesxtraction tool
(see Chapter 3.1.1). For the PageRank score, we will diras# the normalized PageR-
ank score provided by TREC.

e Topic features. We want to evaluate th€eet of hierarchical classification in search-
ing webpages. Before computing the topic features, we neédd a proper topic for
each search task (or query). In our experiments, we reauéral graduate students to
manually categorize all the search tasks into the ODP fuleyaisee Chapter 3.3.1) in
our ranking system. For example, for the task 2 (*avp”) in TRED10 (see Table 4.3),
one possible categorization in the ODP hierarchy is “SpoAssample of the assigned
topics by students for the search tasks from the TREC 203 datan be seen in Table
4.4. To get the topic features for each document, we use etarchical SVM classifiers
(see Chapter 3.2) to predict its probability estimatiord aalculate the topic features

% .
Fr(q,d) by equation 4.1.

Table 4.4: A sample of assigned topics by students for theclsgasks in TREC 2010 web
track dataset.

Task Description Assigned Topics
1 Find information about horse hooves, their care, aktealth

diseases of hooves.
2 Find events sponsored by the Association of Volleyports
ball Professionals.
3 Find locations and information of Discovery Channebhopping
stores and their products.

4 Find information about iron as an essential nutrierjtHealth

5 Find information about jobs in Connecticut. Business

6 Find information about penguins. RecreatiofPets

7 Find information about computer worms, viruses, ar@omputers-Security
spyware.

8 Find information about Flushing, a neighborhood iS8ociety
New York City.

9 Find information about PVC pipes and fittings. Business»Industrial

Goods and Services
10 | Find beginners instructions to sewing, both by harts— Crafts-»Needlework
and by machine.

5The PageRank scores can be freely downloaded tienp: //boston.1ti.cs.cmu.edu/clueweb®9/
wiki/tiki-index.php?page=PageRank.
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Finally, we conduct feature scaling on each computed feddymin-max normalization in
the range [0,1]:
Si(d) — ming Si(d)
max; S;i(d) — ming Si(d)

S/(d) = (4.9)

4.3.2 Evaluation Metric

To evaluate the performance of the ranking methods, we usgpalgr information retrieval

measure, named DCG (Discounted Cumulative Gain) [59]. D&gaiticularly useful to eval-

uate the performance when the documents are judged by grelésdnce (e.g., the five-point
scales in TREC) rather than binary relevance. The intuitb®CG is that the usefulness
(gain) of a document in a ranking list is discounted by itsifias. In fact, DCG accumulates
the discounted gain over all the documents up to a positipeci8cally, the DCG score at a
positionp can be defined as

DCG. = Zpl & (4.10)
P — logx(1 + i) '

whererel; € {-2,0,1, 2,3} is the graded relevance of the result at positiortJsually, the
DCG scores for dierent queries vary dramatically. To make the scores betwégrent
gueries comparable, we actually use NDCG (Normalized Disted Cumulative Gain) in our
experiments:

DCG,
IDCG,

whereDCG;, is the ideal DCG score at positign Thus, the DCG score is rescaled in a
comparable range so that we can compare our evaluatiorcrbetween dierent queries.

(4.11)

4.3.3 Experiment Configuration

We compare our ranking method with the traditional flat ragkinethods without hierarchy.
To simplify the notation, we denote the two ranking methosl&ERIC and FLAT (flat search
method). For ERIC, we trai6 V M2 on all the features (in ranking Equation 4.8) including
the topic features. For FLAT, we use the classic Okapi BM28 [@nking function. It only
uses the query-document features and PageRank score. éxmenment, the Okapi BM25
ranking score is computed as

Semzs(0, d) = (Z BM25(q, d(fi))) - Fpagerankd) (4.12)

1<i<6
whereBM25(g, d™) is defined as

TFW,d®) - (k + 1)

TF(W,d®) +k - (1-b+b- 85

(4.13)

BM25(g, d) = Z IDF (w, D) .

wegnd(

where the definition off F(w, d) and IDF (w, D(™) is the same as computing the query-
document features in ERIQ]| is the length of the documedtin terms;avgdlis the average
document length in the datasbtandk; are the parameters.
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We use a variation of the cross validation method in our erparts. When we conduct
experiments for a dataset (such as TREC 2009), we choosddteset as the testing set and
use the other three datasets (i.e., TREC 2010, 2011 and 281tRg training set. We train
the ranking methods of ERIC and FLAT on the training set teetthre parameters, and eval-
uate their performance on the testing set respectively. apert the average NDCG scores at
different positions in the s, 5, 10, 30, 50}. Furthermore, we measure the significance of per-
formance diference by paired t-test at 5% significance level between BRHOFLAT When
ERIC achieves significantly better performance than FLA& will mark its NDCG scores in
bold.

4.3.4 Results
Comparing ERIC and FLAT

Table 4.5 compares the performance of ERIC and FLAT, in texitee NDCG scores at the
positions of 3, 5, 10, 30 and 50. We can see that the resultRi6 Bre quite good. In all cases,
ERIC always performs significantly better than FLAT. Thekst performance gain (abou0
NDCG improvement) can be observed on TREC 2010 dataset. difiermance on the other
datasets also increases h9®to Q2. It clearly demonstrates that our ranking method is much
better than the traditional flat ranking approach.

Table 4.5: The NDCG scores of ERIC and FLAT.

TREC 2009 | TREC 2010 | TREC 2011 | TREC 2012
NDCG | ERIC FLAT | ERIC FLAT | ERIC FLAT | ERIC FLAT
N@3 | 0.307 0.145| 0.275 0.046| 0.251 0.080| 0.189 0.104
N@5 | 0.317 0.165| 0.278 0.063| 0.253 0.087| 0.195 0.086
N@10 | 0.315 0.183| 0.292 0.080| 0.250 0.094| 0.200 0.095
N@30| 0.312 0.200| 0.344 0.101| 0.302 0.106| 0.255 0.114
N@50| 0.344 0.211| 0.369 0.122| 0.333 0.116| 0.290 0.138

DiscussionWhy does ERIC perform better than FLAT? We will use the taske®(Table
4.3) in TREC 2010 as a case study. The topic of task 2 is to fimshtevsponsored by the
Association of Volleyball Professionals (AVP) and the sesfgd query is “avp”. The topic of
this task is about “Sports”. Figure 4.3 shows the top ten edniesults by ERIC and FLAT.
We can see that by integrating the probabilities of “Spoafséach webpage, ERIC success-
fully returns the highly relevant results related to the @sation of Volleyball Professionals.
However, for FLAT, we can see that the top six ranked resuéisreelevant. Actually, these
results are about the movie “Alien vs. Predator” which alas &n abbreviated form as “avp”.
As “avp” is an ambiguous keyword in this task, FLAT withouetarchical classification can
not distinguish the webpages belonging to “Sports”. Thisggsults are worse than ERIC.

We use the significance test script from LETOR dataset. Itlmamownloaded ahttp://research.
microsoft.com/en-us/um/beijing/projects/letor/.
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1. avp - about the avp
http://www.avp.com/About-Us/About-the-AVP.aspx

2. volleyball @ avp.com: about: about the avp
http://www.avp.com/about/

3. avp volleyball tickets - avp volleyballtickets at stubhub!
http://www.stubhub.com/avp-volleyball-tickets/

4. avp manhattan beach open, pubclub.com!
http://www.pubclub.com/specialevents/avp.htm

5. volleyball @ avp.com: tour schedule: 2008 avp crocs tour s&uule
http://web.avp.com/schedule/

6. volleyball @ avp.com: news: avp.com
http://web.avp.com/news/

7. volleyball @ avp.com: photos: avp.com
http://web.avp.com/photos/

8. volleyball @ avp.com: photos: avp.com
http://www.avp.com/photos/

9. volleyball @ avp.com: tour schedule: avp hot winter nights our
http://web.avp.com/schedule/winter_tour. jsp

10. volleyball @ avp.com: avpnext: avpnext
http://web.avp.com/volleyball_nation/avpnext/

(a) Ranked results by ERIC

1. avp home — ugos world of alien vs. predator — ugo.com
http://avp.ugo.com/

2. aliens vs. predator extinction - planet avp
http://www.planetavp.com/avpextinction/

3. planet avp - news, screenshots, previews, reviews, guide
http://www.planetavp.com/

4. avp - planet avp
http://www.planetavp.com/avp/

5. planet avp: avp movie
http://www.planetavp.com/avpmovie/

6. planet avp: avp movie: files
http://www.planetavp.com/avpmovie/files/

7. volleyball @ avp.com: tour schedule: 2008 avp crocs tour seuule
http://www.avp.com/schedule/

8. volleyball @ avp.com: home: the #1 volleyball destination line!
http://web.avp.com/index. jsp

9. volleyball @ avp.com: tour schedule: avp hot winter nights obur
http://web.avp.com/schedule/winter_tour. jsp

10. planet avp: avp requiem
http://www.planetavp.com/avp2movie/

(b) Ranked results by FLAT

Figure 4.3: Ranked results for query “avp” in TREC 2010 by ERInd FLAT. The relevant
results are marked in bold.
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Comparing ERIC and FLAT with category keywords

It may be argued that as we already use the category infaym@s hierarchical probabilities
output by SVMs) in ERIC, it could be unfair to only use the keyds and webpage impor-
tance for FLAT. Thus, in our next experiment, for FLAT, we &atié category phrase into the
guery keywords and repeat the experiments for FLAT on aldidiasets. For example, when
conducting experiments for the “avp” task in FLAT, we chattgeguery to “avp sports”. We
compare the results between ERIC and FLAT with category kegis: The results are shown
in Table 4.6. Comparing Table 4.6 and Table 4.5, we find thatast cases adding the category
phrase into the query keywords for FLAT does improve itsqanfaince. However, compared
to the new results of FLAT, ERIC still consistently perfortyetter in all cases.

Table 4.6: The NDCG score of ERIC and FLAT with category kekdgo

TREC 2009 | TREC 2010 | TREC 2011 | TREC 2012
NDCG | ERIC FLAT | ERIC FLAT | ERIC FLAT | ERIC FLAT
N@3 | 0.307 0.188| 0.281 0.128| 0.256 0.109| 0.185 0.096
N@5 | 0.317 0.184| 0.284 0.134| 0.260 0.109| 0.192 0.104
N@10| 0.315 0.200| 0.298 0.150| 0.257 0.120| 0.197 0.122
N@30| 0.312 0.213| 0.348 0.183| 0.307 0.080| 0.253 0.135
N@50 | 0.344 0.221| 0.375 0.210| 0.337 0.054| 0.288 0.149

DiscussionWhy does FLAT with category keywords still perform worserttigRIC? Here,
we still use the “avp” example for discussion. Figure 4.4vehdhe results of FLAT with
category keywords. We can see that by combining the sugbesesy with the category phrase
(i.e., "avp Sports”), the returned results are still notgobirstly, there are still two pages (i.e.,
the 4th and the 10th pages) related to the movie “Alien vs.d&oe”. This is because the
word “Sports” also appears in the two pages. Secondly, thehee ranked results are still
not relevant. Although both words appear in these pageg,afeemore likely to be relevant
to the general word “Sports” rather than the Associationaféyball Professionals (“avp” ).
Moreover, we also find that the relevant results (i.e., Atha®d 9th results) in Figure 4.3(b) are
filtered out. This is because the word “Sports” does not appghese pages. This experiment
confirms that simple keyword queries are often fiisient to express topics as keywords [29].
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1. buy sports tickets online from a sports ticket brokeragdor philadelphia,

chicago, new york, los angeles
http://www.abctickets.com/sports/

2. indiana university
http://www.indiana.edu/

3. tickets at stubhub! where fans buy and sell tickets
http://www.stubhub.com/

4. avp home — ugos world of alien vs. predator — ugo.com
http://avp.ugo.com/

5. huntington beach events calendar information
http://www.huntingtonbeachevents.com/

6. board of directors - associated content
http://www.associatedcontent.com/company_directors.shtml

7. gamespy: game sites
http://www.gamespy.com/network/

8. avp manhattan beach open, pubclub.com!
http://www.pubclub.com/specialevents/avp.htm

9. volleyball @ avp.com: about: avp media guide
http://www.avp.com/about/mediaguide. jsp

10. jammsbro s movie newsfficial avp2 website up and running
http://alelbert.xm.com/topic-1306.htm

Figure 4.4: Ranked results for query “avp Sports” in TREC@By FLAT. The relevant results
are marked in bold.

4.3.5 Analysis of Ranking Feature Importance

In this subsection, we study the importance dfatient features of the learned ranking models.
Recalling that our ranking model is in the form of a linearresgion function (see Equation
4.8), we analyze the weights of the linear regression fonctin this analysis, we report the
top ten most important features of the ranking model trafioedhe TREC 2010 dataset (see
Figure 4.5). The results on other datasets are similar.

Firstly, we analyze the query-document features. Fromreigib(a), we can see that nine
out of the top ten features (marked by bullets) are relatetidaneta text of webpages (i.e.,
title, description, keywords, anchor text); only one featis related to the body text. This result
shows that matching keywords in the meta text of webpagemfaing is very important.

Secondly, we analyze the document features from Figurd}.5(Ve can see that the
weights of both inlinks and outlinks are positive. It meanattwebpages with rich link con-
nection may be more relevant. It is interesting to see tleatXRL related features (length and
number of slashes) have small or even negative weights.dhm#hat our ranking model may
give high relevance scores to webpages with short URLs. i$iemsonable because webpages
with short URLSs are usually website portals which are morpadrtant. Surprisingly, we find
that the sign of PageRank weight is negative. This is somadomirast to the conclusion from
[85]. To analyze this issue, we plot the histogram of the Ragé scores for both the relevant
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Field Feature

Weight

e Description  Sum of TF score of matched words
e Anchor Text Sum of THDF scores of matched words
e Keywords Sum of TF score of matched words

o Title Number of total words
Body Number of matched words
e Anchor Text Number of total words

o Title Sum of IDF scores of matched words

e Keywords Number of total words

e Description  Number of matched words
e Anchor Text Number of matched words

16.129
7.583

5.932

4.756
4.487
3.052

3.032

2.702

2.592

1.720

(a) Top ten ranked query-document features. Meta textfesiare marked by bullets.

Feature

Number of outlinks
Number of inlinks
Length of the URL

Number of slashes in the URL

PageRank score

(b) Ranked document features

Feature Weight

1st level topic feature  1.408
2nd level topic feature 0.675
3rd level topic feature  0.163

(c) Ranked topic features

Figure 4.5: Most important ranking features with learnedghts from the ranking model

trained on the TREC 2010 dataset.

and the irrelevant webpages in the training set of TREC 2Gasdt (see Figure 4.6). We
can see that for most of the PageRank scores, the irrelessumits occur far more often than
the relevant results. This observation is consistent \migHearned weight of PageRank feature

that penalizes webpages with large PageRank scores.

Thirdly, we analyze our proposed topic features. We can see Figure 4.5(c) that all
the topic feature weights are positive. It means that thiyaade a positive contribution to the
final relevance scores. Although the absolute weight vafubetopic features are smaller
than the other two types of features. It does not mean thdbthe features are not important.
For example, Figure 4.7 shows the contribution of the thypeg of features for the ranking of
“avp” example in TREC 2010 dataset. We can see a clear pdttatiior the relevant results
(with relevance scores 1, 2, or 3), topic features have ni@e 40% contribution, while for
the irrelevant results (with relevance scores -2 or 0), tireesponding contribution by topic

8The training examples of TREC 2010 dataset come from TRE®,20M1 1 and 2013 datasets.
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features is less than 5%. This analysis clearly demonsttias our proposed topic features are
quite dfective for boosting the ranking of relevant results aborederant results in the search
engine with hierarchies.

40000

35000 /‘\
30000

\ ——Irrelevant
15000 / \
10000 / \

0 1 2 3 4 5

PageRank

—Relevant

Number of WebPages

N

o

o

[=)

o
._-—-_-
"

6 7 8 9 10

Figure 4.6: PageRank histogram for the irrelevant and asiewebpages on TREC 2010
dataset. The X axis are the PageRank scores.

100%
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80% -
70% -
60% -
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40% -
30% -
20% -
10% -

0% -

® Document features

B Query-document
features

Score Contribution

B Topic features

-2 0 1 2 3
Relevance Score

Figure 4.7: The score contribution for the “avp” example REC 2010 dataset.

To summarize, in this section, we conduct experiments oM BRIEEC datasets to evaluate
our proposed ranking framework ERIC. From the experimaelits, we find that by seam-

Ol LaCu Zyl_i.lbl
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lessly integrating hierarchical text classification ireoking, our method can significantly out-
perform the traditional flat search methods.

4.4 Summary

In this chapter, we present a novel ranking framework, dal&IC EnhancedRanking by

hl erarchicalClassification), for search engines with hierarchies, apdnteour experimental
results on the well-known TREC (Text REtrieval Conferenee)p search datasets. From the
experimental results, we find that by seamlessly integydtiararchical text classification and
learning to rank methods into the search engine, our framewibh hierarchical classification
can outperform the traditional flat search methods sigmifiga
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Chapter 5

Improving Hierarchical Classification by
Active Learning

Hierarchical classification is important for building sgtaengines with hierarchies. To build an
accurate hierarchical classification system with manygmates, usually a very large number
of documents must be labeled and provided. This can be vestyycoActive learning has
been shown toféectively reduce the labelingtert in traditional (flat) text classification, but
few work have been done in hierarchical text classificatioa t several challenges. A major
challenge is to reduce the so-calledt-of-domain(defined later) queries. Previous state-of-
the-art approaches tackle this challenge by simultangdoshing the unlabeled pools on all
the categories regardless of the inherited hierarchiga¢ni@ence of classifiers.

In this chapter, we propose a novel top-down hierarchicaeatearning framework with
effective strategies to tackle this and other challenges. Witensive experiments on eight
real-world hierarchical text datasets, including the RX1and ODP datasets, we demon-
strate that our strategies are highfieetive, and they outperform the state-of-the-art hieriarch
cal active learning methods by reducing 20% to 40% queries.

This work was in collaboration with Dr. Charles Ling and Dru&imin Wang. We pub-
lished the results in theroceeding of the 17th Pacific-Asia Conference on Knowlé&zgeov-
ery and Data Mining PAKDD 2013) [76].

5.1 Introduction

Given documents organized in a meaningful hierarchy (ssch tapic hierarchy), it is much
easy for users to browse and search the desired documents.hi@rarchical text classification
is an important task in many real-world applications, whietlude, for example, news article
classification [71], webpage topic classification [38, 2B, @d patent classification [40].

In hierarchical text classification, a document is assigmigld multiple suitable categories
from a predefined hierarchical category spaceffddent from traditional flat text classifica-
tion, the assigned categories for each document in therbigrdave inherited hierarchical
relations. For example, in the hierarchy of the Open DingcRroject (ODP), one path of

Ihttp://www.dmoz.org/
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the hierarchy (see Figure 5.1) includésmputer§Comp.) — Artificial Intelligence(A.l.) —
Machine LearningM.L.). Any webpage belonging thl.L. also belongs té.I. andComp.

Root
Comp. Society

History

/\__. AN

Figure 5.1: A partial hierarchy of ODP.

In this chapter, we study machine learning approaches fitdibg a hierarchical classifi-
cation system. According to [106], the mo#iestive and appropriate approach for building a
hierarchical classification system is to train a binary siféex on each category of the hierar-
chy (see detailed review in Chapter 2.2). To train an aceuregrarchical classification system
with many categories, usually a very large number of labdecuments must be provided
for a large number of classifiers. However, labeling a largenlper of documents in a large
hierarchy is very time-consuming and costly. This sevehahders the training of accurate
hierarchical classification systems.

Active learning has been studied and successfully apptie@duce the labeling cost in
binary text classification [112, 96, 118]. In active leamim particular the pool-based active
learning, the learner intelligently selects the most infative unlabeled example from the un-
labeled pool to query an oraéléor the label. This can lead to a good classification modet wit
a much smaller number of labeled examples, compared tditnadi passive learning. Several
works have extended binary active learning to multi-class multi-label text classification
[15, 39, 120]. Basically, they use the one-vs-rest appré@acecompose the learning problem
to several binary active learning tasks.

However, active learning has not been widely studied foranahical text classification.
The key question is how toffectively select the most useful unlabeled examples farge
number ofhierarchicallyorganized classifiers. Many technical challenges existekample,
how should the unlabeled pool be formed for each categorigarnterarchy? If not formed
properly, the classifier may select many so-cabtietiof-domairexamples from the pool. For
example, in Figure 5.1, a classifier @énl. is trained on the examples under the category of
Comp. These examples are calleddomainexamples forA.l.. Examples not belonging to
Comp.are the so-calledut-of-domairexamples foA.l.. If an unlabeled example selected by

2In the literature of active learning, an oracle means a hubsang or an artificial system that can provide
labels for examples.
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the classifier forA.l. is anout-of-domainexample, such as a document belongin@txiety
the oracle will always answer “no”, and such a query will beually useless, and thus wasted
in training the classifier foA.l.. Thus, avoiding the@ut-of-domainexamples for hierarchical
classifiers is very important.

As far as we know, only one work [74] has been published preshioon hierarchical
active learning. To solve theut-of-domairproblem, the authors use the prediction of higher-
level classifiers to refine the unlabeled pools for loweel@lassifiers. In their approach, the
quality of the lower-level unlabeled pools depends criljcan the classification performance
of the higher-level classifiers. However, the authors seenw to pay enough attention to
this important fact, and their methods allow all classiftersimultaneously select examples to
guery oracles (see Section 5.2 for a review). This still$gtada large number afut-of-domain
gueries, as we will show in Section 5.4.3.

As the hierarchical classifiers are organized based on theddwn tree structure, we be-
lieve that a natural and better way to form the unlabeledisalso in the top-down fashion.
In this chapter, we propose a novel top-down active learframgework, to &ectively form the
unlabeled pools, and select the most informaiirelomainexamples for the hierarchical clas-
sifiers. Under our top-down active learning framework, wsedss fective strategies to tackle
various challenges encountered. With extensive expetsr@neight real-world hierarchical
text datasets, including the RCV1-V2 and ODP datasets, wedstrate that our method is
highly effective, and it outperforms the state-of-the-art hierax@hactive learning methods
including [74] by reducing the number of queries 20% to 40%.

The rest of this chapter is organized as follows. In Secti@nWwe review the state-of-the-
art hierarchical active learning method. In Section 5.3 pnesent our top-down hierarchical
active learning framework. Section 5.4 describes the exyggtal methodology and reports
the experimental results. The last section contains thersmn

5.2 Previous Works

To the best of knowledge, only one work [74] has been pubdigiteviously in active learning
for hierarchical text classification. We call it tiparallel active learning framework. In their
approach, at each iteration of active learning (see Figtg the classifiers for all categories
independentlyandsimultaneouslyguery the oracles for the corresponding labels. To avoid se-
lecting theout-of-domairexamples, they use the prediction of higher-level clagsif@refine
the unlabeled pools for lower-level classifiers. Specifycah unlabeled example will be added
into the lower-level unlabeled pools only if its predictgofiom all the ancestor classifiers are
positive.

A drawback of their approach is that they do not consider tleealchical dependence
of classification performance of the classifiers in theinfeavork but allow all classifiers to
simultaneouslyorm the pools and select examples to query oracles. Carestgipical running
iteration of their approach (see Figure 5.2). If the quadityhe unlabeled podi{com, (formed
by the classifier fo€Comp) is not good, possibly mamyut-of-domairexamples (e.g., examples
from Society may still be selected by the classifiers fat.. This will lead to a large number
of out-of-domainwasted) queries, as we will show in Section 5.4.3.
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Figure 5.2: A typical iteration of the parallel active lesugp framework. Multiple active learn-
ing processes (represented by dashed windows) are siraoltaly conducted. U denotes the
unlabeled pool and O denotes the oracle. The horizontaam@ean querying the oracle while
the down arrows mean building the unlabeled pools.

How can we €ectively solve theout-of-domainproblem and the other challenges to im-
prove active learning in hierarchical text classificati@sg?the hierarchical classifiers are orga-
nized based on the top-down tree structure, we believe thatsal and better way to do active
learning in hierarchical text classification is also in tbp-tlown fashion. In the next section,
we propose a new top-down active learning framework foranghical text classification to
effectively tackle these challenges.

5.3 Top-down Hierarchical Active Learning Framework

In this section, we propose our top-down hierarchical ad@arning framework. Dierent to
the parallel framework which simultaneously forms the belad pools for all categories, our
top-down approach forms the unlabeled pools in the top-dashion. We use Figure 5.3 to
describe our basic idea.

In Figure 5.3(a), we start active learning at the top levelhef hierarchy. The top-level
classifiers forComp. and Societyselect examples from the global unlabeled p®6i; to
guery the oracle for the labels of top-level categories. aitm@vered examples from the oracle
will be used to form the unlabeled pod&..mpandis,. After the top-level classifiers are well
trained (estimated by our stopping strategy. see Sect®R)5we start active learning in the
second level. In Figure 5.3(b), the second-level classifier A.l. (or History) and its sibling
categories select examples from the unlabeled @égh, (or Us.J) to query the oracle. As
the examples if/comp (O Usog) have true labels o€omp. (or Society which are answered
by the oracle, we can ensure that the second-level classifi#mot selectany out-of-domain
examples.
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! Root ! Root
: Uroot—i>0
| Comp Society! v Comp. | I “Society !
TS < Obiucoy\ i i /\Usoc_i_’o
1 | | 1
1 | | 1
Al History o Al i :L Historyj
M.L. M.L.
(a) The top level learning stage. (b) The second level learning stage.

Figure 5.3: Examples of two typical active learning stageshe top-down active learning
framework. Only partial nodes in the hierarchy are alloweedd active learning. The notations
in this figure follow Figure 5.2.

Comparing Figure 5.2 and Figure 5.3, we can see that the mé@mehce between the par-
allel framework and our top-down framework is which nodes&rosen to do active learning
(the dashed windows in both figures) at each iteration. Thallpaframework chooses all the
nodes while our top-down framework only chooses a subsepfopriate nodes in the top-
down fashion. We call the set of those nodesvasking set denoted byW. We present the
pseudo code of our top-down active learning framework:

Input: Query budgeB

Output: Classifiers for all nodes

1 repeat
2 Add the root nodesg into ‘W;
3 repeat
4 Select examples frord{, to query oracles and update children classifiers for each nod
nin ‘W until its stopping criteria is satisfied;

Form the unlabeled pools for the children nodes of the fimistaes;

Replace the finished nodesy with their children nodes;
until ‘W is empty
until B=0;

In our top-down active learning framework, two critical tbages need to be resolved for
effective active learning. The first challenge is that the usliedb pools may be too small. We
use the examples answered by the oracle to form the unlapel@d, and they can be too
small for lower-level classifiers to learrtectively. The problem may become worse when
active learning is applied to even lower-level categoriBise second challenge is how do we
stop learning as it is critical for theffective scheduling of active learning atiérent levels.
We will tackle the two challenges in the following subsento

o N o O

5.3.1 Dual-pool Strategy

For the second and lower-level nodes, we need to form théaldd pools that are large enough
but have fewout-of-domainexamples. In this section, we propose a novel dual-podiegtya
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to enlarge the unlabeled pools. Twdtdrent unlabeled pools will be built: tremswered pool
and thepredicted poal

Answered poolOur top-down active learning framework schedules the ntalgsery the
oracle from the top level to the bottom level. For a node @artyg) in the working set, we ask
oracles for the labels of its children categories. For adcbdtegoryc, among the answered
examples from the oracle, tip@sitiveexamples ot will be used to form the unlabeled pool
for the children categories @ The negativeexamples will not be used as they are already
out-of-domain By doing so, we can ensure that aot-of-domainexamples will be selected
into the unlabeled pools of children categories. We calhsaupool theanswered pochnd use
U?to denote it.

Predicted poolThe quality of the answered paobi? is perfect. However, as the sizetf
depends on the positive class ratio of the ancestor nodesylid be very slow to accumulate
enough examples. Thus, we can also use the prediction oigherHevel classifiers to enlarge
the unlabeled pools. Although this method is also used ipémnellel framework (see Section
5.2), it should be noted that when we build the lower-levdabaled pools, the higher-level
classifiers are already assumed to be well-trained. Thdqgbi@d of higher-level classifiers
would be accurate. Thus, the risk of introduciogt-of-domainexamples would be much
smaller than the parallel framework. We call the pool butthis method agredicted poal
denoted byZsP.

Refiltering dual pools We have two unlabeled pools for each nagen our top-down
framework. When we select a batch of examples to query theegra natural question is how
do we allocate the batch of queries to each pool? On one hadjuality of the answered
pool U? is perfect but the uncertain (useful) examples may be toodegvto the small pool
size; on the other hand, more useful examples may exist ilather predicted podd/ but we
may take the risk of selecting tloeit-of-domairexamples. To balance the tradieave propose
arefiltering strategyfor allocating the queries to bots? andelip.

Our basic idea is to filter out the certain examples from thelgpbefore we allocate the
batch of queries. Specifically, given the batch dkewe firstly filter out the certain examples
from both2® andU” to generate two small candidate po6fsandC?. The filtering threshold
will be empirically tuned in our experiments (See Sectiohd). As the examples i@? are
all perfect (answered by oracle) and uncertain (worthy &orig we put more queries into the
perfect candidate pod@? by allocating mig|C?, M} queries. The rest of the queries will be
allocated taC?.

5.3.2 Stopping Strategy

An important factor of our top-down hierarchical activerl@ag framework is knowing when
to stop learning for the nodes in the working set. In otherdsphow do we estimate if
the classifiers are well-trained or not? A heuristic appioacto estimate the classification
performance by cross-validation. However, from our pikgi&riments, such a method is quite
unstable due to the small size of the labeled examples inedetarning.

In this chapter, we adopt a simple ydistive approach to stop learning. Simply speaking,
if no uncertain examples can be further selected from theidate pools, we stop learning.
This is reasonable as querying very certain examples campobve the classification perfor-
mance [126]. In our top-down framework, this strategy carmny@emented by checking the
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size of the two candidate poal¥ andCP. If both pools are empty, that means all the examples
in the unlabeled pools are very certain, we stop learding.

To summarize, in this section, we propose our top-down tsareal active learning frame-
work with several strategies to tackle tbet-of-domairproblem and the other challenges en-

countered. In the next section, we will conduct extensiyeeexnents to verify theféectiveness
of our framework.

5.4 Experiments on Hierarchical Text Classification

In this section, we conduct extensive empirical studiesviduate our top-down hierarchi-
cal active learning framework compared to the state-ofattdnierarchical active learning ap-
proaches.

5.4.1 Datasets

We use eight real-world hierarchical text datasets in opedrents (see Table 5.1). The first
three datasets (20 Newsgroup, OHSUMED and RCV1-V2) are camimenchmark datasets

for evaluation of text classification methods. The other @ia¢asets are webpages collected
from the Open Directory Project (ODP).

Table 5.1: The statistics of the datasets. Cardinality ésabherage categories per example
(multi-label).

Dataset Examples Features Nodes Cardinality Height

20 Newsgroup 18,774 61,188 27 2.20 3
OHSUMED 16,074 12,427 86 1.92 4
RCV1-V2 23,149 47,152 96 3.18 4
Astronomy 3,308 54,632 34 1.91 4
Biology 17,450 148,644 108 3.03 4
Chemistry 4,228 56,767 34 1.44 4

Earth Sciences 5,313 71,756 58 2.16 4
Math 11,173 108,559 107 1.93 4

The first dataset i20 Newsgrougs a collection of news articles partitioned evenly across
20 different newsgroups. We manually group these categories inteamingful three-level
hierarchy. The second datase©®BISUMED, a clinically-oriented MEDLINE dataset. We use
the subcategoriieart diseasewhich is also used by [68, 97]. The third dataseRiSV1-V2
[71], a news archive from Reuters. We use the 23,149 docufiemh the topic classification
task in our experiments The other five datasets are webpages collected from the ODP. O

3For the root node which selects examples from the very lalgigagjunlabeled pool, this stopping strategy
could be very slow. Thus, we empirically set 25% remainedjetids the query limit for the root node.

“http://people.csail.mit.edu/jrennie/20Newsgroups/

Shttp://ir.ohsu.edu/ohsumed/

6http://www.csie.ntu.edu.tw/~cj1in/libsvmtools/datasets/
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is a web directory with a complex topic hierarchy. In our expents, we focus on a subset of
the webpages extracted from tBeiencesubtre€’. The original Science subtree has more than
50 subcategories. We choose five subcategories closetgadamacademic disciplinésThey
areAstronomyBiology, Chemistry Earth ScienceandMath.

For each dataset, we use bag-of-words model to represeatmdots. Specifically, each
document is represented by a vector of term frequencies.s@/farter Stemming to stem each
word and remove the rare words occurring less than threesti®mmall categories which have
less than ten documents are also removed.

5.4.2 Experiment Configuration

We adopt the hierarchical SVMs [81, 110, 119] as the baseéealn each category, a linear
SVM classifier is trained to distinguish its sibling categserunder the same parent category.
We use LIBLINEAR [41] as the implementation of linear SVM.lIBwing the configuration
of [74], we set up the penalt§ as 1,000 and the cost dtieientw as the ratio of negative
examples in the training set. Other parameters of LIBLINE&R set to the default values.

To evaluate the performance of hierarchical classifiersyseethe hierarchical F-measure
[115, 106, 74], a popular performance measure in hieraathest classification. It is defined
as,
hF = 2xhPx IR , hP = i PO Til O il , andhR = i PO Tl O i (5.1)

hP+hR i |Pil 2i I Til
wherehP is the hierarchical precision ariiR is the hierarchical recalll5i is the hierarchical
categories predicted for test examplevhile T; is the true categories of.

We compare our top-down framework with the parallel framaw@4] and the baseline
random approach. For our top-down framework, weassgrage uncertaintj39] as the infor-
mativeness measure. It measures the example based onitageamacertainty among all child
classifiers under the same parent. For the parallel franlew@ chooseincertainty sampling
[112] which is also used in their experiments. For both apphes, the uncertainty of an ex-
ample is measured by the absolute SVM margin score. For titona approach, we simply
select the examples randomly from the global unlabeled. pool

Now, we describe the active learning setting in our expenisieWe set up the total query
budget as 1000. The active learning experiment is decordpoteseveral iterations. In each
iteration, each node in the working set selddtexamples to query the oracle. Similar to [74],
the batch sizéV is set as the logarithm of the unlabeled pool size on eaclyaateWe use a
simulated oracle in our experiments. When receiving a qukeyoracle replies with the true
labels for all its subcategories. It should be noted that74{,[each query only returns one
label. To make a fair comparison, we also return the labelsliahe subcategories for the
parallel framework and the random approach. After recgitite oracle answers, we update
the labeled dataset, retrain the classification models eoard the F-measure results on the
testing set.

71t can be freely downloaded Attp://olc.ijs.si/dmozReadme.html.
8Most of the other subcategories are A-Z index lists and nzadamic topics (e.g., Publications and Confer-
ences).
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To avoid the impact of randomness, we use 10-fold cross atabid to evaluate the per-
formance of active learning approaches. Specifically, wdmerducting active learning experi-
ments on each dataset, we randomly split the dataset intolds@ts with equal size. Of the 10
subsets, one set is retained as testing data. For the remaime sets, we randomly sample
0.1% data as the labeled set. The remaining examples wilseeé as the unlabeled pool. The
active learning experiments are then repeated 10 timesfifdlaesults are averaged over the
10 runs and accompanied by the error margins with 95% cordederervals.

5.4.3 Experimental Results on Benchmark Datasets

Before the experiments, we set up the parameters for ouddom framework. We need to
decide a proper uncertainty threshold to filtering out ¢eréxamples (see dual-pool strategy
in Section 5.3.1). As the SVM margin score based uncert@éntgt comparable, we normalize

it by the functiong(f) = exp(—%l) (0 < g < 1)wheref isthe SVM margin score. We compare
the uncertainty thresholds infterent values from 0.1, 0.2, to 0.9 on the RCV1-V2 dataset. The
results are plotted in Figure 5.4. We find that generally #ingdr the threshold is, the better the
performance is. Thus, we use 0.9 as the uncertainty thrégholur experiments.

.65
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Figure 5.4: Hierarchical F-measure on RCV1-V2 dataset diftierent uncertainty thresholds
from 0.1t0 0.9..

Firstly, we discuss the experimental results on the threxlaark datasets (20 News-
group, OHSUMED and RCV1-V2). Figure 5.5 shows the perforoeacurves of hierarchical
F-measure averaging over 10 runs. We can see that our top-gpgroach (framework) out-
performs the parallel approach and the random approacifisagrly on all datasets. Specif-
ically, on the OHSUMED and RCV1-V2 datasets, the perforneacurves of our top-down
approach dominate the parallel approach and the randonoagpthroughout all iterations.
On the 20 Newsgroup dataset, surprisingly, during theeyastage of active learning (before
400 queries), we observe the overlap of performance cufvasr@aop-down approach and the
random approach. The parallel approach performs even wohss could be due to the poor
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initial classification performance (smaller than 0.1). Hweer, after around 500 queries, our
approach starts to outperform the random approach and thédgbapproach and keeps the
dominant margin till the end.
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Figure 5.5: Hierarchical F-measure on the 20 Newsgroup, @MED and RCV1-V2 datasets.

We examine the ratio afut-of-domairgueries. Figure 5.6 shows the averagé-of-domain
ratios on the three datasets. We can see that our top-dowoagbphas a huge reduction of
the out-of-domaimgueries. Among the three datasets, our top-down approachsdess than
10% out-of-domaimueries. By analyzing the experiment logs of our top-dowpreach, we
discover that for the second and the lower-level, on avesdhgeit 40% queries are allocated
to the answered pools (see Section 5.3.1). As the labeliankwered pools are given by
the oracle, the quality of the selected examples is perfBots, noout-of-domainexamples
will be selected. The observed fewt-of-domairexamples only occur in the predicted pools.
The low ratio also indicates that the predicted pools buyilbhr dual-pool strategy are much
more accurate than the parallel framework. This explaing adr top-down active learning
approach is morefkective than the parallel approach.

I Top-down
n0.7; B Parallel
0.6 EEl Random

0.0 20 Newsgroup OHSUMED RCV1-vV2

Figure 5.6: Theout-of-domainratios of the queries on the 20 Newsgroup, OHSUMED and
RCV1-V2 datasets.
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We also study how many queries can be saved by our top-dowioagp For the three
approaches, we record their best performance and the gueeled in Table 5.2. We find that
to achieve the best performance of the parallel approaattppedown approach needs much
fewer queries. About 20% to 37% queries can be saved. Forggaon the RCV1-V2 dataset,
the parallel approach needs 1,000 queries to achieve Oiéf ¢hical F-measure, while our
top-down approach only requires 630 queries. Thus, (£0680)/1000 = 37% queries are
saved. Compared to the random approach, the query redustyen more significant (about
30% to 56%). It clearly indicates that our top-down approaahore défective in reducing the
gueries than the parallel approach and the baseline rangproach.

Table 5.2: The best hierarchical F-measure with needediesuen the 20 Newsgroup,
OHSUMED and RCV1-V2 datasets. The value in the bracket isdlative query reduction.

Method | Hier F1 | Random  Parallel  Top-down

Random | 0.455 1000 850 (15%) 700 (30%)

20 Newsgroupg Parallel | 0.483 1000 800 (20%)
Top-down| 0.518 1000

Random | 0.552 1000 720 (28%) 440 (56%)

OHSUMED Parallel | 0.591 1000 680 (33%)
Top-down| 0.630 1000

Random | 0.587 1000 660 (34%) 490 (51%)

RCV1-V2 Parallel | 0.606 1000 630 (37%)
Top-down| 0.661 1000

5.4.4 Experimental Results on ODP datasets

In the following experiments, we compare the performancéhefthree approaches on five
ODP datasets. From Figure 5.7, we find that on all datasetspptdown approach performs
consistently better than both the parallel approach andaih@om approach. The largest im-
provement occurs on the Math dataset where our top-dowrpapprsaves 40% queries to
achieve the best performance of the parallel appr8aBi.analyzing theout-of-domairratio
in Figure 5.7f, we find that our top-down approach reducesahe of out-of-domaimueries
by 32% on the Math dataset compared to the parallel approHoh . similar pattern can also
be observed on the Biology and Earth Sciences datasets \@hetg 32% and 23%ut-of-
domainqueries can be saved. For the Astronomy and Chemistry datagecan see that the
parallel approach makes less than 26@t-of-domairratios. This can explain why our top-
down approach performs only slightly better than the paralbproach on the Astronomy and
Chemistry datasets. However, on some of the ODP datasefsetformance curves of the par-
allel approach have an obvious large overlap with the randpproach, while our top-down
approach always outperforms the two approaches at the eartioé learning.

To summarize, from our extensive experiments on eightweald hierarchical text datasets,
we empirically demonstrate that our top-down active leagritamework is moreféective than
the state-of-the-art active learning approaches for robreal text classification.

®The top-down approach requires 600 queries to achieve 6rdrichical F-measure of the parallel approach
which requires 1,000 queries. The saving is (163D0)/1000=40%.
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Figure 5.7: Hierarchical F-measure and the ratiosoof-of-domainqueries on the ODP
datasets.

5.5 Summary

In this chapter, we studied the problem of using active liegrto improve the performance of
hierarchical text classification. A major challenge féfieetive hierarchical active learning is to
form the unlabeled pools to avoid the so-called out-of-dongaeries. Previous state-of-the-
art approaches tackle this challenge by simultaneoustyifay the unlabeled pools on all the
categories of the hierarchy regardless of the inheritethighical dependence of classifiers.
We propose a novel top-down hierarchical active learniagiegwork which utilizes top-down
tree structure to form the unlabeled pools. Under our fraomkywe propose severaftective
strategies to tackle the out-of-domain problem and therathallenges encountered. With
extensive experiments on eight real-world hierarchicel tatasets, we demonstrate that our
top-down framework is highly féective, and it outperforms the state-of-the-art hierarghi
active learning methods by reducing 20% to 40% queries.

We believe that our top-down active learning framework cagatly help the construction
of hierarchical classifiers for search engines with hidr@s, especially when the labeled ex-
amples are very costly to acquire.
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Chapter 6

Mining Academic Topics in Universities

In previous chapters, we have discussed the foundationilfifoy SEEU. The fundamental
algorithm is the hierarchical webpage classification. Du¢he resource constraints of our
small cluster, we cannot conduct a full classification of éinéire web and run a full search
engine such as Google or Bing. However, our classificatictesy can be very useful for
organizations such as governments, universities, corapaoi any vertical areas.

In this chapter, we present a novel hierarchical classifindtamework for mining aca-
demic topics in universities. In our framework, we train @rarchical classifier based on
the Wikipedia academic disciplines, and apply it to minedacaic topics in the 12 largest
universities in Ontario, Canada. According to our compnshe experiments, the academic
topics mined by our hierarchical classification framewan @asonable, consistent with the
real-world topic distribution in most universities, andttiee than the traditional LDA topic
modeling approaches. To the best of knowledge, this is teeviiork that mines academic
topics in large-scale university webpage dataset witlsfatig results.

6.1 Introduction

Academic research is one of the major activities in univiesi It plays an important role in fa-
cilitating knowledge discovery and technology innovailomodern society. Mining academic
topics from university webpages can help researchers zaéhe organization and relations of
academic research in universities. It is also the basic wkusity based web applications, such
as the university web search engines with hierarchies 8EEU).

A simple approach to mine academic topics in universitiés isse the department or fac-
ulty organization structure (i.e., a web directory in a @msity) [80], and classify webpages
by matching department host names in URLs. However, suamplesiapproach can only ex-
tract a very shallow hierarchy where specific and more usefiits are missing. For example,
at Western, although we can judge webpages belonging tmfhe of “Computer Science”
(CS) by matching the CS department host narwl (uwo.ca) in URLS, we may not know
if a webpage belongs to specific topics, such as “Supporbwvecachine” or “Computational
linguistics”, because topic related information is oftest explicitly expressed in URLs. In
addition, this approach can only assign hard classificatowebpages, and not degrees of
confidence (or probability), which is very important for kamg webpages in an academic

76
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topic hierarchy (as discussed in Chapter 4).

Some content based methods have been proposed for miniieg ioptext documents.
The most popular methods are the topic modeling approaclatural language processing
and information retrieval research, such as LSA [34], PLSA] [and LDA [11]. Basically,
these methods use mathematical or statistical algoritlonfisid topics by analyzing the co-
occurrence of word-document data (see detailed review ap@h 2.4). A major advantage of
these approaches is that they do not require human supervighus, the topic mining process
can be conducted automatically and directly on the targdtgdset. This is based on the
assumption that the topic structure can be self-descrifiregenerated) directly by the dataset.
However, the topics generated by these methods are heapndent on the quality of text
corpora. For webpage collections that contain a lot of logemeous data (e.g., documents
with different length and format, skewed topic distribution and sp tive topic quality of
these methods may not be satisfying. This is confirmed in @pe@ments on the SEEU
dataset where the mined academic topics by these approahast satisfying (see Section
6.6).

In this chapter, we present a novel hierarchical classifindtamework for mining aca-
demic topics in universities. In our framework, we build ara@demic topic hierarchy based
on the commonly-accepted Wikipedia academic disciplingased on this academic topic
hierarchy, we train a hierarchical classifier, and apply itlassify webpages from the top 12
largest universities in Ontario, Canada into the topicdngny. According to our comprehen-
sive experiments, the academic topic pattern mined by @uratghical classification system is
reasonable, consistent with the common sense of topichiiston in these universities, and
better than the state-of-the-art LDA topic modeling apploalo the best of knowledge, this
is the first work that uses hierarchical classification to enaademic topics in large-scale
university webpage datasets with satisfying results.

The rest of this chapter is organized as follows. In Secti@) &e present a high-level
overview of our general framework for mining topics by hretdcal classification. The de-
tailed components of the framework will be discussed in tllewing three sections. Specif-
ically, Section 6.3 discusses the methods to build topicanohies. Section 6.4 shows the
training of the hierarchical classifier. Section 6.5 ddssithe SEEU webpage dataset and
conducts a comprehensive analysis of the academic toprosdntiy our hierarchical classifi-
cation system. In Section 6.6, we compare our approach tate-sf-the-art topic modeling
approach. The last section is the summary.

6.2 The General Framework
In this section, we describe our general framework for ngrniapics by hierarchical classifica-
tion in domain-specific datasets, such as the universitypagé dataset. Figure 6.1 shows the

high-level overview of our framework which consists of tsteps:

1. Building a topic hierarchy based on the application denkaiowledge.

2. Training a hierarchical classifier for the hierarchy.

lhttp ://en.wikipedia.org/wiki/List_of_academic_disciplines

www.manaraa.com



78 CaAPTER 6. MiNING AcADEMIC Topics IN UNIVERSITIES

3. Conducting hierarchical topic classification and vigiad/analyzing the results.
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Figure 6.1: The general framework for mining topics by hiengcal classification.

The first and most important step in our framework is to buitdasonable and commonly-
accepted topic hierarchy for the application domain. Is gtep, we emphasize the importance
of the domain knowledge. Usually, for well-developed apgiion domains (e.g., electronic
encyclopedia, web directory, patent, news media), theeady exists some high-quality topic
taxonomies on the web, such as the Wikipedia topic hierdraime ODP (Open Directory
Project) category hierarchythe WIPO (World Intellectual Property Organization) peateax-
onomy#, and the IPTC (International Press and TelecommunicaGonscil) NewsCodes tax-
onomy’. Due to the large number of human editirftpet, the quality of these topic hierarchies
would be much better than the topic hierarchies extracteddsiioc methods or tools. Thus,
we can directly build the topic hierarchy by reusing thesistelg taxonomies. Section 6.3
discusses the details of our topic hierarchy for the dombimiversities.

The second step is to train a hierarchical classifier for tieelilt topic hierarchy. In our
framework, we use supervised machine learning algorithmase specifically, the hierarchical
classification algorithm (see Chapter 3), to train the di@ss The most diicult part in this
step is to collect enough training data for the learning idigo. The training data should be
consistent with the targeted application dataset and kmgegh to cover dticient words and

thtp://en.wikipedia.org/wiki/Category:Main_topic_classifications
3http://www.dmoz.org/

“http://web2.wipo.int/ipcpub
5http://iptc.cms.apa.at/site/NewsCodes/
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documents related to the application domain. After thaning data acquisition, we can train

a hierarchical classifier. Finally, it is very important terfporm model evaluation to assess the
guality of the trained hierarchical classifier. We discugs d@ata acquisition method and the
evaluation of the trained hierarchical classifier in Set6a.

The third step is the standard text classification task wiverapply the trained hierarchical
classifier to classify the application dataset into the kardt topic hierarchy. After that, we
obtain topic probabilities of each text document and conhdistialization analysis to reveal
the mined topic pattern. Section 6.5 applies the trainedhtshical classifier on a large-scale
university webpage dataset and give a detailed discusbiout éhe topic pattern mined by our
framework.

6.3 Building Academic Topic Hierarchy

A reasonable and commonly accepted topic hierarchy is vapoitant for the university
search engine. It can greatly benefit the search experiénegecs. There are several crite-
ria that we think a good topic hierarchy should have for ursitg search engines.

1. Academic Topics Academic institutions usually have various academiciplises. It
is important to define a hierarchy with a broad coverage ofrmomacademic disciplines
so that the majority of university users will feel familiaeid and convenient to find the
desired topics.

2. Tree structure. The tree-structured hierarchies are intuitive and usendly user in-
terfaces for most of web applications. However, a compdiddtierarchical structure
(with deep categories) may not be easy for browsing. Thesiapic hierarchy in SEEU
should not be too deep.

In fact, to build the hierarchy for SEEU, we can reuse exgstirell-known taxonomies,
such as the Open Directory Project (OPB)d the category structure Wikipedia

e ODP hierarchy. The topic hierarchy of ODP is a tree structlihe relationship between
a parent category and a child category basically follows’t8eA” constraint. Thus,
it may be a good choice to use the ODP taxonomy for SEEU. Sewer&s [67, 92]
have successfully used the ODP hierarchy in text classgitaHowever, we argue that
the ODP hierarchy is not suitable for academic institutidrecause ODP is a general
(not academe oriented) taxonomy. For example, we can fingy mam-academic cate-
gories in the ODP, such as “Shopping”, “Home”, “Games”, “@iag”, “Vehicles” and
“Massage Equipment”. Those (sub)categories are uselessificersity search engines.
Moreover, we can also observe a noisy mixture of academicaneacademic subcate-
gories inside ODP. For example, under the top-level cajetfoomputers”, we can find
non-academic subcategories of “E-Books”, “Usenet” and tiEators” as well as aca-
demic subcategories, such as “Parallel Computing” andftéidl Intelligence”. Such a
confusing category structure will not only mislead userg,dso reduce the classifica-
tion performance.

Shttpy/www.dmoz.org
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e Wikipedia hierarchy. The taxonomy in Wikipedia is a direti@cyclic graph DAG)
rather than a tree-structured hierarchy. In a DAG graphaue can have multiple par-
ent nodes. For example, in Wikipedia, the category “Unigéhas two parent categories,
i.e., “Nature” and “Astrophysics”. Such a DAG hierarchy hates the second criterion
(tree structure) we mentioned before. Therefore, it mayusmnormal users who are
usually familiar with the tree-based browsing. Anothergeon of Wikipedia categories
is that not all the child-parent relations strictly followet “IS-A” semantics. For ex-
ample, on the help page of Wikipedia categaofiéisere is a category path “History?
“History by location” — “History by country” — “History of Australia” — “History
of Australia by location™ “History of Australia by state or territory “New South
Wales, Queensland”. We can see that, the state “New Soutbst\@éfinitely does not
belong to (is a) “History”.

Therefore, in this thesis, we prefer to manulbpild an academic topic hierarchy. We
build an academic topic hierarchy by using the Wikipediastlof Academic Disciplines,
which is a tree-structured hierarchy containing a broageas academic disciplines. We also
survey and adopt categories of web directories in sevepaMedical Doctoral universities
in Canada (e.g., Western, Queen’s and Toronto). After aeveunds of discussion with do-
main experts (i.e., faculty and graduate students)fiiedint disciplines, we eventually build a
four-level academic topic hierarchy of 464 categoriesolters a broad scope of academic dis-
ciplines, including “Business”, “Education”, “Enginerg”, “Health science”, “Humanities”,
“Journalism and media studies”, “Law”, “Medicine”, “Natlrsciences” and “Social sciences”.

A partial snapshot of this academic topic hierarchy can ba seFigure 6.2. To help read-
ers understand how this hierarchy works in SEEU, we also sltoexample that searches for
“data mining” under the category hierarchy “Natural scesie>“Computer sciences>“Information
science” in SEEU (see Figure 6.3). It should be mentionetilitiaough there may exist some
categories not covered by our hierarchy, it does not medrrtbainiversity webpages belong-
ing to those categories are lost. In SEEU, users can stilltfinde pages by simply searching
for keywords without any categories or searching for keylsat a higher-level category (e.g.,
“Computer sciences”) .

6.4 Training the Hierarchical Classifier

In this section, we describe the training of the hierardhalzssifier in our framework. We have
already discussed the hierarchical classification algorin Chapter 3. We will mainly focus
on the training data acquisition and model evaluation otthi@ed hierarchical classifier.

6.4.1 Training Data acquisition

After we build the topic hierarchy, we need to collect enoladieled documents as training set.
The dataset we collect must satisfy two criteria. Firsthg text representation of the training

"http://en.wikipedia.org/wiki/Help:Categories
8We still use existing topic hierarchies, such as Wikipedidasic.
9http://en.wikipedia.org/wiki/List_of_academic_disciplines
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Artificial intelligence
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Applied mathematics
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Computer sciences
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@ operating systems
@ Programming languages
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Theory of computation

Figure 6.2: A partial hierarchy in SEEU under the “Naturaksces” category.

documents should be as similar as the targeted universipages. Secondly, the collected
dataset should contain accurate yet enough documents.

One may say that as we build the topic hierarchy based on thigp#&dia academic disci-
plines, we can simply collect the Wikipedia pages in thogegm@ies as the training set. We
argue that this is actually not a good idea. For most Wikipeditegories, the number of pages
belonging to them is so small that it is ifBaient to train accurate text classifiers. Moreover,
the text representation of Wikipedia articles is quit€edent from normal university web-
pages. The dierence of text distribution may even degrade the classoicgterformance of
supervised learning algorithms.

To tackle this problem, we propose to use commercial seangimes to collect the labeled
webpages for each category of SEEU’s topic hierarchy. Tlethod is also used in Li [77] and
Ha-Thuc [47]. Specifically, for each category, we firstlyefaily prepare a list of keywords
that are closely related to the meaning of the categoriesTable 6.1 for an example). We
then submit these keywords to several commercial seardhen(e.g., Google or Bing). The
top ranked webpages can be approximately treated as labededples for a categoH). By
automatically exploring the huge number of indexed webpageommercial search engines,
we can easily collect a large number of labeled webpages.

10To reduce the number of noisy webpages, we only use the topst@®ed results which are usually relevant
to the query.
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Figure 6.3: Searching “data mining” under the topic hiehgrtNatural sciences>»“Computer
Information science” in SEEU.

sciences>"

Table 6.1: A sample of the manually prepared phrases foryiqgesearch engines.

NO.

Category

Query keywords

1 Business “Business”,“Business analysis”,"Marketing”

2 Education “Education”, “Curriculum instruction”, “Educa-
tion technology”

3 Engineering “Engineering”, “Engineering research”, “Engi-

neering system”

N

Health science

“Health science”

5 Humanities “Humanities”, “Arts”, “Human culture”

6 Journalism and me-“Journalism”, “Media studies”, “Communication”
dia studies

7 Law “Law”

8 Medicine “Medicine”, “Disease”, “Diagnosis and treatment”

9

Natural sciences

“Natural sciences”, “Formal sciences”

10

Social sciences

“Social sciences”, “Society”, “Sociology”

In addition, as we are building a search engine for academstitutions (not the general
web), we restrict the search results in the domain of unitiessby adding “site:edu” in the
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query!! Thus, the diference of data distribution between the labeled datasettfie collected
webpages from search engines) and the testing set (i.emniversity webpages) can be greatly
reduced. Readers may ask why not just search webpages argleéstd universities? We argue
that this may cause overfitting problem [36] as we will tranddest the classification model
on the same dataset.

It should be noted that we can leverage the hierarchicaR"1&lations to further enlarge
the training set for intermediate categories by propagdha returned webpages to lower-level
subcategories. For example, when we send a query “Artificialligence” to search engines,
we can lift the returned webpages to its ancestor categarees “Computer sciences” and
“Natural sciences”.

By crawling search engines, we eventually collect about@I®labeled webpages in 464
categories as the training set. We randomly sample 30 aa¢sgo assess the quality of the
dataset. Two graduate students were recruited to manudliyiee a small subset (less than
500) of the webpages in each category, and reported theggvacauracy of labeling webpages.
Based on their report, our dataset has about 90% accurach wia believe is acceptable for
training SVMs due to the soft margin principle of SVM whichvisry robust to noisy data[26].

We use the bag-of-words model to represent the crawled vgelspaEach webpage is
treated as a vector of word features represented a®FFveights. After we extract text
features by our feature extraction tool (see Chapter 3) ew®we rare words occurring in less
than three documents and apply Porter Stemming [89] to allisvdShort documents with less
than ten words are also removed. Eventually, we generatd 683abeled examples in 464
categories as the training set. We tabulate the statidtimsrdraining set in Table 6.2.

Table 6.2: The statistical information of the training se¢ach level of SEEU’s hierarchy.

Level Categories Class Ratio Examples Features

1 10 0.0979 563,163 1,329,110
2 88 0.1009 ST, 777 432,697
3 261 0.1012 15,362 254,037
4 105 0.1717 5,788 163,521

Based on the collected labeled examples for the new higranghcan train a hierarchical
classification system. We use search engines to collectahmerig set. It may be argued that
this method will introduce noise to the dataset, and resuét bad hierarchical classification
system. However, in the next subsection of model evaluati@nwill show that the trained
hierarchical classification system is actually very good.

6.4.2 Evaluation of Classification Model

In this subsection, we will firstly conduct experiments t@lexate the classification perfor-
mance of our hierarchical classification system on the ctdte dataset. After that, we will
analyze the classification models to explain fteetiveness.

11Both Google and Bing support “site” syntax in the queries
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Cross-validation Experimental Results

We use the hierarchical SVM classifiers developed in Chap&s the classification model.
As the feature size is very large (i.e., more than one milamds in Table 6.2), we need to
select a relatively small number of features to reduceitigiime. We use the DF (Document
Frequency) feature selection algorithm and 50,000 featur¢his experiment. They are the
best parameter setting in our previous hierarchical diaaion experiments (see Chapter 3.3).

Five-fold cross validation is performed on the dataset f@i@ation. We show plots of the
average precision, recall and F1-score at each level of idgrarbhy in Figure 6.4. We can
see that the hierarchical SVM classifiers can achieve a tipegformance on the collected
dataset. Specifically, the average F1-score at the top wetsles larger than 0.7. This is due to
the good balance between high precision and high recall §io¢h are larger than 0.7). For the
3rd and the 4th levels, although the F1-score drops, it shieelinoted that the worst F1-score
is still larger than 0.6 which is better than our previouseskpents on the ODP dataset.

0.7
0.6 -

(]

505 .

g M Precision

[}

- 0.4 -

o H Recall
0.3 1 m Fl-score
0.2 -

0.1
0 _
1 2 3 4

Level

Figure 6.4: The average F1-score dtetient levels by the hierarchical SVM classifiers on the
SEEU dataset.
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Figure 6.5: The optimal threshold distribution affdrent levels.

We study the learned prediction thresholds. Figure 6.5 shbe/threshold distribution at
each level. We can see that the result is consistent with rewiqus hierarchical classification
experiments in Chapter 3.3. Generally speaking, most cag=yat the top two levels favor
lower thresholds (i.e., less than or equal to 0.5) whiledattyresholds (i.e., 0.6 and 0.7) are
more often used at the lower levels. This explains the higalrat the top levels and the high
precision at the deeper levels.

Interpreting Hierarchical Classification Models

Why can our hierarchical SVM classifiers can achieve suchaa gierformance despite the
potentially noisy training set? To explain thiextiveness of our hierarchical SVM classifiers,
we use a white-box method to analyze the learned SVM modetsalRthat a linear SVM
classification model is in the form of linear functions (sde@ter 2.1.3),

fxw)=w-X = Zwix,- (6.1)

1<i<n

wherex; is a word in the documeng; w; is the learned weight for that word. Intuitively, for
each wordx;, a large positive weight of; means that the worg may be quite relevant to the
learned topic while a negative weight may indicate an iuaté word. Thus, we can actually
analyze the words with highest weights to interpret thesifi@ation models of linear SVMs.
We firstly analyze the words with highest weights in SVM mada the first-level topics.

We tabulate the top ten words in Figure 6.6. We can see thaetwords are quite relevant to
the learned concept (topics). For example, in the topic afsiBess”, the top ten words are all
about the business activities or related areas, suem@spreneurshippurchasingandtrade
As SVM models successfully learn those domain-specific woitdmakes the hierarchical
classifier achieve a higiecall as shown in Figure 6.4. In addition, we also find that there is
no overlapping of the top ten words between each pair of sopitven by checking the top
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Business Education Engineering H?a"h Humanities
science
business education engineering kinesiology philosophy
insurance vocational assurance clinical morphology
entrepreneurship  counselor bioengineering pharmaegutic history
risk bilingual control optometry bioethics
finance alternative visi rehabilitation syntax
purchasing cooperative telecommunications histology  omogiics
trade peace automotive hepatology literature
bargaining higher polymer dentistry rhetoric
marketing distance petroleum pharmacy speaking
resources critical aerospace nutrition storytelling
(a) First five topics
Journalism Law Medicine Na_ltural S_omal
sciences sciences
newspaper paralegal physiology  endocrinology social
magazine contract epidemiology decision political
translation law dietetics information studies
propaganda jurisprudence primary multimedia psychology
advertising criminal infectious anatomy sociology
intercultural tax oncology knowledge  anthropology
television forensic general statistics ethnography
community tort cardiology algebra slavic
radio corporations psychiatry biology geography
technical competition surgery virology econometrics

(b) Last five topics

Figure 6.6: The top ten most relevant words in SVM modelsafitist-level topics.

100 words, we find that the average overlapping rate is eil than 1% (i.e., one word). This
means that our classification system can learn very goodmis@ative words among tlierent
concepts. This explains why tipeecisionis also very high in Figure 6.4.

One may argue that it may be easy to learn the first-level $gsc¢hey are general concepts.
Will our classification system also learn good models forpgeeand more specific topics?
As we are more familiar with “Computer science” research,cleose the subtopics under
“Computer science” as a case study. There are 13 subtopdey uin Figure 6.7 tabulates
the top ten most relevant words for those subtopics. We canhse, overall, the results are
also very good. For example, we can find familiar words suctaa mining information
retrievalandknowledge discoverin “Information science”pbject orientedn “Programming
languages” andeadlockandosin “Operating systems”.

We check the F1-score for those subtopics under “Computenase”’. We find that most of
subtopics (12.3) have F1-score around 0.69, similar to the average FE$08@9) at the third
level. It means that the SVM models learned under “Computense” are also reasonbly
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Artificial Computer Computation  Computer  Data structure
Intelligence graphics Model security and algorithm
artificial graphic cloud cryptography algorithms
machine image wireless security structure
vision visual high tolerance parallel
robotics scientific guantum fault data
experts opengl grid cipher structural
natural processing ubiquitous incident distribution
decision process performance cryptographic hash
cognitive siggraph parallel encryption random
learning signal distribution firewall array
logistics pixels hpc virus adt
(a) First five subtopics
Human : . Logic in .
Information Information Operating
-computer : computer
. ) science systems : systems
interaction science
hci management technology logic operations
human knowledge information fuzzy system
interaction  multimedia system semantics systems
hcii database systems plc deadlock
interface information  telecommunications circuit 0s
interactive retrieval business lambda cpu
usable mining services alps memory
chci data desk syntax kernel
gesture science gis programme silberschatz
multimodal  discovery mi ft operating system

(b) Second five subtopics

Programming Software Theory
languages engineering of computation
program software automata
language engineering theory
concurrent sei computer
orientation se symbols
compiled softwareengineering algebra
oriented cmmi turing
functional swe complex
function swen symbolic
linguistics mse sipser
object sepg np

(c) Last three subtopics

Figure 6.7: The top ten most relevant words in SVM modelsastibtopics under “Computer
sciences”.
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good. However, there is one subtopic with only 0.55 F1-schiis the “Information systems”
category. We can see from Figure 6.7(b) that several words desk servicesandsystemare
too general to represent the concept of “Information systei@n the other hand, it may also
due to the reason that the concept of “Information systesigio broad compared with other
subcategories and thudiittult to learn.

To summarize, in this section, we have demonstrated thatietarchical SVM classifiers
can achieve good performance for academic topic classificat the collected dataset. In
the next section, we will apply it to mine academic topicgrirthe challenging two million
university webpages in the SEEU dataset.

6.5 Hierarchical Topic Classification

In this section, we describe the SEEU university webpagasgatand apply the trained hierar-
chical classification system to mine (classify) academpic®in the SEEU dataset.

6.5.1 SEEU Webpage Dataset

According to Wikipedia, there are in total 98 universitiesGanadd? Due to the limited
computational resources, we can not index and classify agggpfrom all the universities in
Canada. In this thesis, we focus on the 12 largest univessiti Ontario based on the total
number of student enrolment. They are Toronto, York, Otialestern, Ryerson, McMaster,
Carleton, Waterloo, Guleph, Queen’s, Brock and Windsor.

For each university, we use the populgpache Nutck’ crawler to crawl the webpages
in its university domain (see detailed crawling method inpApdix A), and use our feature
extraction tool to extract the text in webpages. We use theedeature preprocess method
(see Section 6.4) to clean the dataset. The final SEEU uitiveletaset is tabulated in Table
6.3.

12Seehttp://en.wikipedia.org/wiki/List_of_universities_in_Canada.
13The home page dflutchis http: //nutch.apache.org/.
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Table 6.3: The 12 largest universities in Ontario based endtal number of student enrolment.
Enrolment data are from the Wikipedia page “List of univeesiin Canada” in April 2013.

University URL Enrolment Pages Unique Words Total words
Toronto Wwww.utoronto.ca 74,760 433,418 606,865 Bx 10°
York Www.yorku.ca 52,290 214,142 471,077 A6 % 108
Ottawa Www.uottawa.ca 38,700 122,708 284,777 &V x 108
Western  www.uwo.ca 34,100 278,414 394,721 3Bx 108
Ryerson www.ryerson.ca 31,770 65,900 156,710 ABx 10°
McMaster www.mcmaster.ca 26,070 261,256 404,449 A8x 10°
Carleton www.carleton.ca 24,250 63,012 214,691 IBx 10
Waterloo www.uwaterloo.ca 24,160 221,283 466,409 Ax 108
Guleph www.uoguelph.ca 22,080 85,239 192,245 Abx 108
Queen’s www.queensu.ca 20,550 153,291 370,970 Mx 10°
Brock www.brocku.ca 17,006 43,064 154,155 EBx 10°
Windsor www.uwindsor.ca 16,180 34,417 140,141 7 x 10°

6.5.2 Results from Hierarchical Classification

We apply the trained hierarchical classification systemlassify webpages in the SEEU
dataset into the academic topic hierarchy, and analyzesthéts.

We briefly describe the experimental methodology in thisdaining task (step 3 in our
general framework; see Section 6.2). Specifically, for amehpage in the dataset, we apply
our trained hierarchical SVM classifiers to output a vectgrobabilities indicating the degree
of confidence of each topic in the hierarctiyBased on these topic probability vectors, we are

interested in answering the following questions.

1. How are the academic topics distributed in universities?

2. What relations exist betweenfi@irent topics?

3. Which university has the largest program in a specificd®pi

In this analysis, as we are more familiar with the acadenscidiines of “Natural sciences” and
especially the “Computer sciences” research, we will nyaamalyze the topic classification
results under the topic hierarchy of “Al>> “Natural sciences™ “Computer sciences”.

14To preserve the hierarchical information, we adjust théctppobability prediction outputted by SVMs as
Padj(t) = P(t) X [Ty ept P(t'), whereP(t) is the likelihood probability of topit andf t is the set of all the ancestor

topics of the topid.
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Topic Pattern at the First Level
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Figure 6.8: Topic classification distribution at the firstde

We first analyze the topic classification results at the fesel of the topic hierarchy. For
each university, we plot the average topic probabilitiealbthe webpages in Figure 6.8. Each
stacked column represents the first-level topic classifinatistribution (percentage) in a uni-
versity. We can see a clear pattern that all the univerdiize® a large portion (about 80%)
of webpages categorized into three primary topics, i.eattial sciences”, “Humanities” and
“Social sciences”. This result is reasonable because nidkeascientific research works in
universities are related to the three topics. Successiilglytifying the three important topics
is a strong evidence of théfectiveness of our classification framework. The remainihger-
centage of webpages are categorized into seven small tdpyabie percentage ranking, they
are “Engineering”, “Journalism”, “Medicine”, “Educatidn‘Health”, “Business” and “Law”.
This ordered topic list is also reasonable. We can see thabfhranked topics are also about
research, such as “Engineering” while the low ranked to(@as., “Business” and “Law”) are
mainly about professional education where relatively fewebpages are published in univer-
sities.
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Topic Pattern under “Natural sciences”
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Figure 6.9: Topic classification distribution under “Natusciences”.

Next, we study the topic classification results under “Naitsciences”. From Figure 6.9, we
can see that the top four largest topics are disciplineseroimg formal sciencé, such as
“Computer sciences”, “Mathematics” and “Statistics”, ehthe rest topics are about classical
natural science research, such as “Physics” and “Cherhidsythis classification pattern by
our hierarchical classification system consistent withréa world webpage distribution? To
study this issue, we use commercial search engines to eéstiheanumber of webpages in the
corresponding departments in each university. For exagnimiehe Department of Computer
Science at Western, we can type “site:csd.uwo.cas@ogleto estimate its total number of
webpages® By using this method, we make an approximation of the comedimg topic
order in Western a€omputer Science Mathematics> Statistics> Applied Mathematics
Physics> Biology> Earth Science- Chemistry'’ Despite a slight dierence of several pairs of
topics, we can see that the general partition of formal seiemd natural science is consistent
with ours.

It is also interesting to study the relations of these topinder “Natural sciences”. In this
analysis, we still focus on the topic prediction results iestérn. For the ten topics under
“Natural sciences”, we can find eight corresponding depamtshin the Faculty of Science of

Bhttp://en.wikipedia.org/wiki/Formal_science

161t should be noted that some non-academic pages may be oustea.

1"The “Space science” webpages are included irPthgsicsdepartment. Western does not have “Agriculture”
department.
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Western. We compute the average topic probabilities forpagbs belonging to these depart-
ments, and plot a heat map matfin Figure 6.10.

Physics

Earth science

Chemistry

Biology

Department

Statistics|

ApMath

Math

Computer sciencef

Topic

Figure 6.10: A heat map matrix showing the average topicadvdities estimated by our hierar-
chical classifiers for webpages belonging to departmerttseifraculty of Science of Western.
Each row is a vector of topic probabilities. The dark blueocoheans small probability while
the bright red color means large probability.

We can find three interesting relations from Figure 6.10 sgport the fectiveness and
usefulness of our hierarchical classification framework.

e A strong diagonal in the heat map. This indicates that mosipages in those depart-
ments (at the y-axis) have high probabilities towards thieesponding inferred topics (at
the x-axis), but low probabilities in other topics. It medhat our hierarchical classifier
can achieve good classification performance under “Nasziahces”.

e A bright submatrix at the lower-left corner. This submashows the relations among
four closely related departments (Computer sciences, MatWath and Statistics) that
all deal with computation or data analysis and processilaga® research.

e Popularity of computer science topics. We can see anoth&rpahat the computer
science topic exists in most of the departments. It is wedvwn that the computer

science has become an important tool to support scientdieareh in most research
disciplines.

18A heat map matrix is a graphical representation of matrixneleach grid shows the intensive of values.
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Topic Pattern under “Computer sciences”
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Figure 6.11: Number of pages for topics under “Computenses”.

Finally, we study the detailed topic classification resultsler “Computer sciences” (CS).
Different to the previous analysis that focuses on the topisi@ization distribution, in this
study, we analyze the amount of research activity by vigirithe number of predicted CS
webpages of each university in Figure 6.11.

We analyze the ranking of page number in Figure 6.11. Thikingnis consistent to the
real-world ranking by scale and size of CS research fiedint universities. We can see two
highest peaks from Toronto and Waterloo. It is well-knowatttihe two universities have the
largest Computer Science programs in Ontario. The nextdoiwersities by the number of
CS webpages are York, Ottawa, McMaster and Western. As faedsiow, these universities
have an intermediate size of CS departments or CSE (Comfuatence and Engineering)
departments.

Readers may notice a large number of webpages categorizédasral computer science”
(i.e., not predicted into any specific subtopics). We find thase webpages are either about
general topics of CS, such as home page, research intesteahdl program introduction, or
related CS pages from the other departments, sucBHESS Facilitieqin Faculty of Arts
of Toronto)®, Arts Computing @ice (in Faculty of Arts of Waterloo¥° and Social Science
Network and Data Service@n Faculty of Social Science of Westerf) Due to the large
number of CS related webpages in other disciplines, the agdxp classified into “General
computer science” are far more than the other subtopics.

Bhttp://www.chass.utoronto.ca/facilities/
20https ://artsonline.uwaterloo.ca/aco/
2Ihttp://ssnds.uwo.ca/rooms.asp
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To summarize, in this subsection, we conduct compreherasiadysis of the academic
topics mined by our hierarchical classification approachk.fd that the results are reasonable
and consistent with the common sense of topic distributiamiversities. In the next section,
we will conduct a comparative experiment to demonstratestiperiority of our approach to a
state-of-the-art topic modeling approach.

6.6 Comparing Results from Topic Modeling Approach

In this section, we compare the academic topics mined byieuatthical classification frame-
work to the results mined by a state-of-the-art topic madgtipproach, namely the LDA (La-
tent Dirichlet Allocation) model (see detailed review indpler 2.4).

We use the popular Mallet [84] package for learning the LDAdeldrom Western. We
set the number of topics as 200, a common topic parameteedoning a LDA model. The
hyperparameters alpha and beta are set to 0.22@0Pand 0.1 according to [46].

Analyzing Topic Structure

We first analyze the mined topic structure. As an unsupeihsarning algorithm, the LDA
model does not need training data. In a LDA model, each tepeairned as a word distribution
directly from the testing dataset. The most probable wondth (largest probabilities) can be
used to interpret the semantics of topics. We tabulate théeio most probable words from
some sample topics in table 6.4.

Unfortunately, we see that the topics mined by the LDA modebary noisy. Although the
LDA model can discover some academic topics, such as T1¢tBnoming Language”), T26
(“Astronomy”), T37 (“Chemistry”) and T49 (“Biology”), wean find many non-academic and
even unmeaningful topics, such as T11 (*Assignment”), T22uEtang”) and T39 (“Build-
ing”). This is due to the reason that the LDA learning aldorit(e.g., the Gibbs sampling
[46]), as an unsupervised model, does not have expliciindtsbn between academic topics
and non-academic topics. All the topics in the LDA learninggedure are just word distribu-
tion estimated from the co-occurrence of word-documerd.dat

On the other hand, in our hierarchical classification baggulaach, the mined topics (see
Table 6.6 and Table 6.7) are more meaningful and contr@lalbtis is because our hierarchi-
cal classification system is guided by a manually-built acaid topic hierarchy and trained
on a large number of labeled webpages. This is one of the madpantages of supervised
classification approaches over unsupervised topic maglafproaches.

In addition, it should be noted that the labels (names) ofe¢hopics in LDA have to be
labeled by a human. This could be very costly for a real wopliaation where automated
data mining process is crucial. While in our hierarchicalssification approach, the topic
hierarchy is built &-line.

Analyzing Topic Distribution

Secondly, we analyze the quality of the inferred topic distion of each webpage. Following
the same experimental methodology in Section 6.5.2, wefalsgs on the topic prediction
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Table 6.4: Some sample topics mined by the LDA model from vaglp in Western. Academic
topics are marked in bold.

Topic | Top ten most probable words
T1 | class, methods, public, java, int, string, return, objectves, lang, field
T2 | award, scholarship, president, canada, faculty, yeaarimnigraduate, honour, communications
T3 | vol, iss, papers, science, discussion, home, issue, semclseries
T4 | canadian, poetry, poems, early, love, long, poets, thy, dalgeart
T5 | chrw, comments, radio, chrwradio, events, view, musicodgear, london
T6 | oset, spline, components, change, radius, rgb, creatjrcablor, declared
T7 | post, cpsx, events, news, mission, science, comments gpacch, read
T8 | chrw, comments, london, radio, blogs, week, chrwradior,yeasic, news
T9 | papers, present, research, questions, student, diseupsigect, topics, work, including
T10 | exam, psychology, chapter, student, lecture, test, assgts, final, ffice, class
T11 | assignments, student, exam, read, lecture, class, lah Viieak, mark
T12 | teaching, graduate, student, program, learning, facutiykshops, research, resources, award
T13 | computer, student, science, web, research, csd, infamatepartment, grad, graduate
T14 | music, band, album, song, record, rock, cd, play, sound, lafon
T15 | war, world, life, time, people, year, history, church, ligead
T16 | media, program, information, student, studies, courshisjssion, application, mit, faculty
T17 | time, people, year, work, don, good, feel, life, studeny, da
T18 | meeting, committee, council, club, members, usc, exeguviward, policy, reporter
T19 | patients, clinical, cancer, treatment, studies, trial, dsease, year, risk, group
T20 | network, system, services, computer, mail, message, integt, user, information, security
T21 | gazette, student, editor, comments, archive, post, nead, advertise, contribute
T22 | form, men, women, mustang, club, athletics, schedulerimétion, student, campus
T23 | music, performance, faculty, piano, wright, orchestra, ogra, record, instruments, student
T24 | limited, canada, corporate, library, company, corp, fagdresources, canadian, mining
T25 | research, development, canada, ontario, technologysinglondon, city, centre, governance
T26 | physical, star, astronomy, earth, planet, sun, orbit, enegy, magnetic, mass
T27 | scholarship, geography, science, author, search, réseatario, digital, faq, journal
T28 | web, standards, news, advertise, campus, daily, brovesst, Student, services
T29 | web, standards, news, advertise, daily, campus, brovesst, fondon, student
T30 | blood, patients, heart, increase, infusion, iv, transfusin, dose, cardiac, ffective
T31 | wed, thu, tue, fri, news, gazette, archive, student, linksppus
T32 | neurological, dr, science, residence, clinical, lond@uro, view, department, bio
T33 | pain, surgery, stroke, patients, research, muscle, studieinjury, knee, joint
T34 | wed, thu, tue, fri, gazette, archive, arts, entertainmeks, sports
T35 | studies, history, culture, literature, religious, antfolngy, compared, french, topics, theology
T36 | meteor, meteorite, research, public, project, video,deer, photos, web, camera
T37 | chemistry, reaction, protein, structure, mass, sample, ad, nmr, solution, chemical
T38 | language, speech, hear, science, research, pathology, ecoumications, disorders, children, au-
diology
T39 | room, turn, door, open, north, east, building, day, roadeti
T40 | patients, health, care, program, research, cancer, familyjondon, Ihsc, hospital
T41 | english, literature, book, history, read, century, tegt,author, studies
T42 | writing, assignments, class, student, chapter, grade vekek, essay, medical
T43 | web, standards, news, advertise, campus, daily, brovesst, fondon, services
T44 | web, standards, research, graduate, student, browsarcsechealth, information, page
T45 | gi, nc, tx, synthase, dehydrogenase, ref, phosphate,®ejprsubunit
T46 | click, map, number, selected, line, data, file, true, etigtr,
T47 | ontario, research, canada, professor, association, mferemce, toronto, department, canadian
T48 | health, risk, diabetes, women, vaccine, test, hiv, clinitapregnancy, medical
T49 | biology, plant, animal, species, ecology, evolution, chge, nature, bird, human
T50 | year, work, people, time, london, life, love, family, datgrées
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results in the Faculty of Science of Western. We compute Yieeage topic probabilities for
webpages belonging to these departments. As we are not aiilre true semantics of each
topic inferred by the LDA model, we use the top five most prabatpics for each department.
Figure 6.12 plots the heat map matrix. We can see a relatstedyg diagonal in the matrix.
This means that the LDA model can also work well to infer rtitiopics for each department.

0.32

0.24
Chemistry

Biology

Department

0.04

0.00

Topic

Figure 6.12: A heat map matrix showing the average topicadviities by the LDA model for
webpages belonging to departments in the Faculty of Sciehdé&stern. Each row is a vector
of topic probabilities.

However, comparing the results by our hierarchical classtifon approach in Figure 6.10,
we can not see the strong correlation among the four closédyed departments (CS, Math,
ApMath and Statistics). The pattern that CS topics are shamgong most of departments is
also not observable. Even by trying more topics (e.g., 3@D400) and repeating the LDA
learning , we still can not observe the correlation amongedtiepartments. Actually, for de-
partment of CS, we find that the five most probable topics by L4D& either about specific
topics, such as “Programming language” or non-academacrmdtion such as the CS depart-
ment website. It is unlikely that such topics can be sharethbyother departments. On the
other hand, our hierarchical classification approach catoéthe topic hierarchy to infer top-
ics in different levels of granularity so that specific CS topics (¢Machine learning” and
“Data mining”) related to other research disciplines (€'8tatistics”, “Applied mathematics”)
can be learned. This is why our approach can detect the topielation among related de-
partments.

To summarize, in this experiment, we compare the acadermicgonined by our hierar-
chical classification approach with the LDA topic modelimgpeoach. We find that the results
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mined by our approach are better than the LDA topic modelp@ach.

6.7 Summary

In this chapter, we have presented a novel hierarchicasifileetion framework for mining
academic topics from webpages in the 12 largest univessiti®ntario, Canada. According to
our comprehensive experiments, the academic topic pattgrad by our hierarchical classifi-
cation framework is reasonable, consistent with the comsense of topic distribution in these
universities, and better than the traditional LDA topic ralbag approach. In the next Chapter,
we will integrate the hierarchical classification resuit®ithe implementation of SEEU and
conduct usability studies to evaluate the usefulness ol SEE
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Chapter 7

System Implementation and Usability
Studies

In this chapter, we describe the system implementation &WSEBnd conduct two usability
studies to evaluate SEEU. We first describe the main systempaoents of SEEU. After that,
we analyze the university dataset characteristics whietlrglated to the implementation. Fi-
nally, we conduct two usability studies to evaluate SEEU disduss the evaluation results.

The useability studies in Section 7.3.2 were in collaboratvith Dr. Charles Ling and
Dr. Ali Bou Nassif from the ECE department of Western. Thisrkvavas included in the
submission to theEEE Transactions on Knowledge and Data EngineerfiieEE TKDE)
[75].

7.1 System Implementation

In this section, we describe the implementation detailsEES at the system level (i.e. focus-
ing on the functionality and connection betweefietient system modules).

Index replication

PageRank
i.ll_-'..: '

Index

Web server

Web crawlers

Index and query Hierarchical SVMs

server

Smartphone

Figure 7.1: The system view of SEEU.

Figure 7.1 presents the system view of the SEEU search enghrieh includes the user
interface (for both PC and mobile phones), the web server,ritlexing and query server,
the hierarchical SVMs and the web crawlers. Here, we givegh-tevel overview of the five
system modules from the client side to the server side. Atlieat side, the user interface
visualizes the search results and help users navigategdseizrch sessions. The web server

98
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acts as an agent between the user interface and the indexdrguery server. It receives user
gueries, translates them into internal query expresstorise(analyzed by the indexing server),
retrieves the ranked results from the indexing server anare them to users. The indexing
and query server is the core of our search engine. It indéeetekt data, SVM classification

probabilities outputted by the hierarchical SVMs and thgdfRank score of each webpage
into the search engine, and responses to the queries sengkhthe web server. The last
component of the web crawlers crawl the university webpagesextract the text data and
PageRank scores.

As we have already presented the classification and ranlgogtms in Chapter 3, Chap-
ter 4 and Chapter 6, we do not repeat the algorithm of hielegat®VMs and the method of
ranking in hierarchies. In the following subsections, w# briefly discuss the implementation
of the other four system modules.

7.1.1 User Interface

In SEEU, with the integration of multiple hierarchies, timeraction between users and the
search engine is more complex than traditional keywordedaearch engines. Besides the
(optional) query keywords, the user interface of SEEU sthaldo manage the contextual cat-
egory information for navigation, and present them to useas intuitive way. In addition, as
we design both PC and mobile versions of SEEU, the user adeihould be easily extended
to different platforms.

To deal with these design challenges, we adopt the MVC (Mbdei-Controller) archi-
tecture [66, 69], a software architecture pattern, to sdpathe complex representation of
contextual information from the user’s interaction. In SEEhe MVC architecture can be
instantiated as in Figure 7.2.

User Status

Model
Notify changes
Update user status

Wes

Ul widgets

Views Controller | €<—> Web
we . Server
Users operation
555555 Query/response

Figure 7.2: The MVC architecture of SEEU user interface. fiveeUl widgest are attached to
the Views.
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¢ The Model manages the current user status in a search selss®IBEU, the user status
is a five-tuple array, consisting of the keywords, the seagshlts and three contextual
information, i.e., the selected topics, the selected usittes and the selected files. To
reduce the storage cost of servers, the information of uaarssis stored at client-side
browsers as cookiés

The View mainly deals with the visualization of user statdach View corresponds to
an individual user status. Thus, fivetérent Views are implemented in SEEU, as shown
in Figure 7.3. We can see a search box, a topic hierarchy,vensity hierarchy, a file
type hierarchy and a search result panel.

"""""""""""""" 1 Search Box
1 Searc! <
g§'°' L[________________________h_.! (keywords)

0 P e i e e o T
Browse Academic Topics (2 | 1! . . 4 1
I [Type words to searcn opic_] 1 1 | Topic Hierarchy |
| . All Topics | I t d t "
1 Busin§s (3,710) 1 I (Se ecte oplcs) ntario, commonly referred to among Canadia esearch 1
| Education (4,828) Ontario, Canada. Res u |t pa nel |
Engineering (8,680) 11 —
| Health science (7,563) ' (search results) !
1 Humanities (43,724) |
Journalism and media studies (22,2 | 1 hittp://ve vew.lib.uwo.Ca I
| Law (3,001) | | Welcome | Western Libraries Skip to Content Text Only Home Catalogue Libraries Archives and Research Collections Centre
| Medicine (7,441) Western C-B "Bud” Johnston Library (Business) Education Library John & Dotsa Bitove Family Law Library Music Library Allyn & Betty |
Natural sciences (46,296) | | Taylor Library The D.B. Weldon Library Map and Data Cent |
1 Social sciences (39,512) 1 1
1 Others I I * UWO Mail 1
L —————————— 4 I AL welcome to convergence, western's webmail client. for assistance, please contactthe its helpdesk . reminder: its will never ask |
I = e N e R - e — w. email. do not share your password with anyone. sign in with your western account javascript is required.
I Browse Universities (? 1 U . t H . h 1
o Choose all/ Clear all niversi y lerarc y
[Jerock 1 1
1°
[ carlet H 1+1i LW
[ o Dl 1 (selected unlversmes) |
° Qv.h:masm 1 — J ern Facultl s, Schools & Affiliates | Facilities | Governance | People | Research | Senvices | Campus 1
I o [Jottawa Western Maps Web Policies at Western Web Standards W3C Standards In accordance with W3C standards | this site is written with
1 estern
I o [Jaueens 1 AHTIIL anc uses CSSto se| para!e design from con
o [Jryerson 1 |
I o Ororonto 1
= )i
p Dl Waierioo I 1 b@ Western Engineering | Western University "
M 756
| : O :,fn:::;: (278,421 | I es(em Engmeenngl Vestern University . Undergraduate | Prospective Students Current Students Programs International Co- |
hv " 1 Western ©p. Internship & Career Senvices Student Clubs, Groups & Teams Graduate | Prospective Students Current Students
l °_’ _°' _____ I L International Master of Engineering (MEng) Biomedical Engineer ..
——— - 1
Choose File Types (2 | H H Eaculty of Science - Western University
L, Choosa atscuarai | File Hierarchy |
. Faculty 01 Scn nce - Western University Search Western Science: Student Services | Research | OQutreach & Diversity | l
I (seleCted fl Ies) Alumni | A c'mmstrauon | Dean's Office Headlines Caurse Registration Science Student Donation 2012-2013 Opt Out starts |
I T September 1 New Renovations are a Solu
1
! ! Eaculty of Arts and Humanities. The University of Western Ontario 1
1 1
1 Faculty ol ns and Hu~|anmes The University of Western Ontario Contact Us | Site Map | UWO Main A&H Home Welcome 1

Western Dean's Office Faces of Ats and Humanities Tech Services News & Events News and Announcements Featured Ev ents Public |
Humanities Calendar at a Glance Arts Blog Academic

Figure 7.3: The implementation of Views in SEEU. Each Viewresponds to an individual
user status (wrapped by brackets).

e The Controller acts as a bridge between the Model and the &3/ On one hand,
when the Model changes, it sendgdatecommands to all Views to change their pre-
sentation of the related user status. On the other hand, thieesontroller receives user
actions from Views, it queries the web server (see later ai&e 7.1.2) to retrieve ranked
results and change the Model data.

1See discuss of web browser cookichittp: //en.wikipedia.org/wiki/HTTP_cookie.
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The most complex Ul widget (View) in SEEU is the topic hietaras shown in Figure 7.4.
The basic functionality of the topic hierarchy is to help ngsexplore the indexed webpages
and be fectively navigated during the search session. For examwplen a user clicks a topic
category, such as “Natural sciences”, the topic hierarbloys not only its child subcategories
but also its sibling categories. In addition, no matter vkegtvords the user types, the currently
selected category is always be highlighted.

Readers can see numbers surrounded by brackets besidesagagpbry. These numbers
denote the number of webpages classified into each catefthrg bierarchy under the condi-
tions that they also match the current keywords and satigh\constrains in other hierarchies
(i.e., the selected universities and the selected file Jyp&milar to the faceted search [51],
users can use these numbers as a guide to explore the tapichig such as skipping smaller
categories or rolling up or drilling down to fierent categories. With these rich contextual
information, we believe that user’s search experience eagréatly improved.

A novel feature of SEEU is that these
Browse Academic Topics (7) numbers are automatically updated accord-

| ing to the diterent keywords (or categories
in other hierarchies) that users issue. Read-

4 All Topics
> Business (3,710)

Education (4,28) ers may ask how do wefieciently compute
E"Qiln:eri"g (Srﬁ(SUF these numbers on the client side? Actu-
Health science (7,563) .
Humanities (43,724) glly, these_ numbers are acquired b_y ser_1d-
Journalism and media studies (22,216 ing a special search request to the indexing
Law (3,001)
1\ Medicine (7,441) and query server that only returns the num-
s | Natural sciences (46,296) ber of matched webpages rather than a list
| Agriculture (303) \ of indexed webpage features (i.e., URL, ti-
Applied mathematics (4,295) L.
Biology (4,501) tle, description, keywords, and so on). Thus,
Chemistry (2,023) \ the network transmission cost can be greatly
Computer sciences (14,450) . . . . .
Earth sciences (2,768) §aved (just a list of integers). ThIS te_chnlque
Mathematics (6,183) is also used in the other two hierarchies.
Physics (3,550) . ..
Space science (3,166) In SEEU, the MVC arCh|tecture IS Imple-
5'::“5“05 (3:831) mented as gQueryAjax® framework on the
L Others . . .
Social sciences (39,512) client-side. Although we only discuss the Ul
_| Others implementation of SEEU for the standard PC

version, this framework can be easily adapted
to mobile platforms. We only need to change
Figure 7.4: The topic hierarchy in SEEU. Ahe visualization code of the fiierent Views.
user clicks the “Natural sciences” category. Figure 7.5 presents the mobile user interface.

Due to the limited screen size, the three hi-
erarchies (Views) are replaced by three buttons on the h@yge (see Figure 7.5(a)). When
users click one of the buttons (say Topics), SEEU Mobile sgepopup dialog (of full screen
size) that shows the hierarchy similar to the PC version Esgere 7.5(b)). Users can click a
desired subcategory to browse or filter the search reselésHgure 7.5(c)).

2The empty categories (i.e., no results) are hidden by SEHS.i¥ to avoid user confusion when they click
an empty category but do not see any results.

Shttpy/jquery.com
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SEEU: See inside the Universities Mobile

kdd.csd.uwo.ca:88/seeumobile/ Yy —

ES ’e‘ (%) Choose Topic
Type keyword(s) @ Search Topics

Use Topics, Universities and Files to browse/
filter.

,,

What is SEEU?

Western University
http://www.uwo.ca/

Western
The University of Western Ontario, commonly
referred to among Canadian universities as
Western, is a public research university located in

s h !
ee search examples London, Ontario, Canada.

@ Welcome | Western Libraries

Western  hittp//www.lib.uwo.ca/

Welcome | Western Libraries Skip to Content Text
Only Home Catalogue Libraries Archives and
Research Collections Centre C.B. "Bud" Johnston
Library (Business) Education Library John & Dotsa
Bitove Fam ...

- O & .0 « o & -
(a) Home page (b) Topic hierarchy dialog (c) Result page

Figure 7.5: The home page, the topic hierarchy dialog anddbelt page in SEEU Mobile.
The university dialog and the file dialog are similar to thei¢adialog.

7.1.2 Web Server

The web server in SEEU mainly acts as an agent between thentesdace and the indexing
and query server. It translates user queries (i.e., ustrsstant from the controller in MVC
implementation) into internal query expressions (ex@dilater in Section 7.1.3), retrieves the
ranked results from the indexing and query server and retimem to users.

It may be argued that it is not necessary to add this interatedyer as we can directly
expose the internal query API to users. However, we belieeit is worth to do so. Because
we can hide the implementation details of the indexing aretyserver from the user interface.
If we change the query API, we do not need to change any codeeanlient side (e.g., both PC
and mobile Ul). Moreover, adding an intermediate layer daa ensure the security of SEEU.
It should be noted that we also provide APIs to modify or delatiexed data. Exposing such
an API to users could make SEEU vulnerable.

In SEEU, the web server also acts as a load balancing servem\Wéers search documents,
the main computation is performed at the indexing and queryes. When many users visit
SEEU simultaneously, only using one indexing server magssly increase response time. To
solve the bottleneck of querying index server, we useadpbcationtechnique to make several
copies of the index server to reduce response time. At thesgeler sides, we implement
a simpleRound-robinstrategy for load balancing. Specifically, givemindex servers with
process IDs as 0, 1, .m— 1, the web server dispatches tite user query to the machine with
ID=n Mod m where Mod is the modulo operation. In ideal scenarios, theugihput rate of
SEEU can be increased bytimes.
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7.1.3 Indexing and Query Server

We useApache Solf, a popular open source search platform, as the main indexidgjuery
server. The major features 8blrinclude powerful full-text search, hit highlighting, naaal-
time indexing, faceted search, and so on. As the indexingjardy server is the core of SEEU
search engine, we briefly describe its implementation imshbsection.

To index documents int8olr, we need to customize ttg&blr configuration file that defines
the document attributes to be indexed. In SEEU, we defin8dheconfiguration file to contain
a unified document ID, a page importance score, multiplefeattires and a list of probability
values for each category in SEEU's topic hierarchy. Tableta@bulates a brief summary of
these attributes. Most of these attribute values are difieen the subsystems we presented in
previous chapters. Specifically, the Pagelmportancéatéi(2) is derived from the importance
score generated by crawlers (see Appendix A); the texbates (3 to 8) are extracted by the
MapReduce feature extraction tool (see in Section 3.1);fiteeype attribute (10) and the
university attribute (11) can be easily extracted from URibe CatProb attributes (12-475)
are outputted by our hierarchical SVM classifiers (see 8edi5). These attributes are used
to compute the ranking score for each indexed documentgiquery.

Table 7.1: The indexed document attributeSwoir.

NO. | Name Description
1 ID Unique document identifier
2 Pagelmportance Page importance score
3 URL Page URL
4 Title Page title
5 Description Page description (empty for non HTML pages)
6 Keywords Page keywords (empty for non HTML pages)
7 Content Page content
8 AnchorText Anchor text from inbound links
10 FileType Page file type
11 University The name of university where the page is crawled
12-475| CatProb(ID) SVM probability of a category

To query documents iBolr, we need to implement our ranking function$olr. Recall
that we use a linear functiof(X) = W-X to output a ranking score for each indexed document
(see Chapter 4). I80lr, a standard way to search and rank documents is to use the/MVILP
API. Our linear ranking function can be implemented by sfyawy Solr's popular Extended
DisMax (eDisMax) query parser in HTTP requests. For exantplsearch for “data mining”
in “Natural science™ “Computer sciences” i&olr, we can issue a HTTP requesi3olrwith
parameters:

“httpy/lucene.apache.ofgply
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defType= edismax

q = data mining

gf = URL"1.15 Title"2.5 Descriptiori3.2 Keywords3.5 Content1.1 AnchorText3.0
tie =1

bf = sum(product(Pagelmportance,2.2),product(CatProb@a8?rob456,1.13))

We list the meaning of the eDisMax request parameters asAfsl|
o defTypespecifies the type of query. In SEEU, we use the eDisMax quensep.

e ( specifies the query terms, such as “data mining”. We camgu$g to issue empty-
word queries (i.e., browsing).

e (f specifies the text attributes used in our ranking functiame Superscripts denote the
weights of attributes. For exampl&tle” 2.5 means the weight ofitle score is 2.5.

e tie specifies the ranking score aggregation method orgthettributes. InSolr, tie=1
means a linear weighted sum @ff parameter values (i.€}; ;.qW(f) - S(f) wherew(f)
denotes the weight arg{f) denotes the score of attributg while tie=0 means a maxi-
mum function (i.e.maxcqw(f) - S(f)). We usetie = 1 in SEEU.

o bf specifies the additional boosting scores from non-texbates (i.e., page importance
and category probabilities). In the above examplenandproductare mathematical
functions. CatProb403denotes the probability of “Natural scienceCatProb456de-
notes the probability of “Computer sciences”. The scoreudated by the mathematical
expression will be added into the final ranking score.

Thus, for the above HTTP request example, the final rankingesior each document i8olr
is

Score = 1.15x ScordURL) + 25 x ScorgTitle) + 3.2 x S coréDescription
+ 3.5x ScoréKeyword$ + 1.1 x S coréContenj + 3.0 x S corédAnchorT ext
+

2.2 x Pagelmportance 1.13x CatProh403x CatProh456

where eacls corefunction is a THDF score between the query and a document attribute. We
can see that this ranking score equation is similar to tlealinanking function we discussed in
Chapter 4. The weights of the ranking function are storeduinveeb server after the training

of the ranking system.

We discuss the implementation of hierarchical refinemeslie¢sing categories to refine
results) in SEEU. Besides these basic paramebaisprovides a filter parametdiq to restrict
results by constrain. Developers can add any numbédiggfarameters in a HTTP request to
refine the results. In SEEU, we can upparameters to refine the results in three hierarchies
(i.e., topics, file types and universities). For the pregieMample, we can

e use fg=CatProb403:[0.3 TO 1]&fgCatProb456:[0.6 TO 1] to restrict the results in the
category path of “Natural science” (CatProb463)Computer sciences” (CatProb456).
The meaning of CatProb403:[0.3 TO 1] is that the probahilftgocuments belonging to
“Natural science” must be between 0.3 and 1. The numleistactually the prediction
threshold tuned by our hierarchical SVM classifiers (sed¢i&e6.4.2).
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¢ use fg=FileType:(PDF OR DOC) to restrict the file types in “PDF” or".
¢ use fg=University:(Western OR Toronto) to restrict the results/on Western or Toronto.

All of the parameters composition and transformation to RT&quests are conducted by the
Controller in the MVC implementation.

7.1.4 Web Crawlers

We use the populafpache NutckcrawleP in SEEU.Nutchis an open source web crawler
written in Java. It has a highly modular architecture. Masgful plug-ins, such as data
retrieval, hyperlink analysis and document parsing, areaaly integrated intdlutch Thus,
we can collect webpages in an automated manner, and rediscef lonplementation work.
The detailed configuration dutchcan be found in Appendix A.

In this section, we have discussed the implementation oflSiBE& high level. We discuss
the challenges of building SEEU, and propose sevdfative implementation strategies to
solve them. In the next section, we analyze the charadteabthe SEEU dataset which is
closely related to the implementation of SEEU search engine

7.2 Characteristics of University Webpage Data

By usingNutch we start 12 independent crawling jobs and collect 1,972&bpages from
the 12 universities. In this subsection, We analyze theadtearistics of the SEEU dataset,
which include the page importance scores, the file typeiligton and the web graph gener-
ated byNutch

Firstly, we examine the page importance scores in the SEE&kefa We normalize the
page importance scores generatedoychinto the range [1, 100], and plot their histogram in
ten bins in Figure 7.6. We can see a skewed page number diginbThat is, most webpages
have very low importance scores. Specifically, about 99% efwebpages have importance
score less than 10. It means that most of the webpages inrstiee have few inbound links.
This is reasonable because it is not common to see hypebetkgeen diferent departments.
For the 1% of webpages with high importance scores, we findttiey are about university
home pages, department home pages or student servicelngdajes (i.e., library, admission).
This may be due to the reason that most universities depldiedrHTML templates that
contain important entry pages (e.g., university home paggepartment home page) for the
web design. Thus, those primary entry pages appear in mtst @febpages (embedded in the
same template). With a large number of inbound links, tmepartance scores are very high.

5The home page dflutchis http: //nutch.apache.org/.
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Figure 7.6: Histogram of the page importance scores in SE&bket.

Secondly, we study the file type distribution in our dataexdtilon (see Figure 7.7). As the
majority of university documents are published as HTML gagEs not surprising to see that
the HTML pages comprise over 80% of the dataset in our cadlectThe second largest file
type is the PDF file. This is because people in universitiesilispublish research papers and
course materials as PDF files. For the remaining five perdetiiteodata collection, they are
TXT, DOC, PPT, XML andXLS It should be noted that each file type does not mean a single
file format. For example, thBOC category includes both Word 2003 (.doc) and Word 2007
(.docx) files.

TXT, XML, XLS, 0.1%
2.7% Q.3%

PPT, 0.6%

mDOC
B HTML
W PDF
N PPT
B TXT
m XML
= XLS

Figure 7.7: The file type distribution of crawled webpageSHEU dataset.

Thirdly, we study the hyperlink graph (or web grpah) gereatdtyNutch We do not study
the properties of hyperlinks inside each university butuon the relations among the 12
universities by analyzing the inter-university hyperknkor each university, we compute the
proportions of hyperlinks pointing to each of the other ensities. For example, for Western,
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the number of hyperlinks and corresponding proportiondfackets) to other universities is
tabulated below.
Brock: 197 (0.03) Carleton: 137 (0.02)  Guelph: 267 (0.04) M4ster: 625 (0.08)

Ottawa: 276 (0.04) Queen’s: 604 (0.08) Ryerson: 169 (0.02)ororito: 2219 (0.3)
Waterloo: 720 (0.09) Windsor: 1731 (0.23) York: 634 (0.08)

We plot the results as a heat map matrix in FigureS78ich row represents the hyperlink
proportion vector for a university. We can find three typesioiversity relations from this
figure.

York

Windsor

Western

Waterloo 0.42

Toronto 0.36

Ryerson
0.30

Queen's

0.24

Source University

Ottawa

McMaster

Guelph

Carleton

Brock

o 9 N © o & &
3 > & &

> 2 &o ~\°&
2 .
N & & &F a3 & &

Destination University

Figure 7.8: The proportions of hyperlinks pointing to eathhe other universities in SEEU
dataset. Each row is a vector of hyperlink proportion.

¢ Relations by authority. We can see that nearly all the usities have a relatively strong
connection to Toronto. By analyzing the detailed hyperliRLs, we find that most
of the hyperlinks are pointing to the UT Libraryww.library.utoronto.ca). This
could be due to the reason that UT Library is the largest ire@mso that the references
from other universities are high.

¢ Relations by regions. Several strong relations betweers péiuniversities are based
on regional neighborhood, such as Ottawa-Carleton, GtMiaterloo, and Ryerson-
Toronto-York. For example, the two strong cells between I@uand Waterloo are

5The hyperlinks inside each university are extremely lathan the hyperlinks to other universities. For
example, the number of hyperlinks insides Western is 1798&5/ We do not show them in this figure.
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caused by th@riUniversity Group of Librarie$ where long-term library collaboration
exists between the two geographically closer universities

¢ Relations by collaboration. Education or research colaton can also form rela-
tions between universities, such as Western-Windsor, Mit&teQueen’s, McMaster-
Waterloo and Carleton-Waterloo. For example, the impvessumber of hyperlinks
from Western to Windsor is caused by the program expansidbcbtilich Medicine
School of Western to Windsor; the hyperlinks from McMastad ueen’s are made by
the project oHistorical Perspectives on Canadian Publishfrugpllaborated by McMas-
ter and Queen'’s; the relations between Carleton and Watesrformed by the hyperlinks
from Education Development CenireCarleton taCentre for Teaching Excellence Blog
in Waterloo.

Such relations are revealed from the traditional link asiglyHowever, the web links between
universities are actually very sparse compared to the notaber of webpages. For example,
only 0.4% links in the SEEU dataset have connection to West@nly using link analysis
may not reflect the true collaboration and béidult to reveal the potential collaboration be-
tween universities. This can again be seen as a motivatiamgbes for the SEEU search
engine which relies on content based data mining methog kegwords matching and text
classification) for facilitating research collaboratiagtiween universities.

In this section, we have analyzed the characteristic of SH&tdset. The analysis poses a
strong motivation of SEEU search engine for facilitatinge@rch collaboration between uni-
versities. In the next section, we evaluate SEEU by condgdivo usability studies in our
university.

7.3 Usability Studies

We conducted two usability studies to evaluate SEEU. Onecaaducted in the Electrical and
Computer Engineering Department of our university, andativer one was conducted in the
Computer Science Department at the same university.

7.3.1 Usability Study in the ECE Department

We collaborated with the ECE (Electrical and Computer Eegimg) Department to evaluate
the usability of SEEU. The usability study was conductedesssignment in an undergraduate
Software Engineering coursa October 2012.

27 undergraduate students in this course were evenly sgithree groups (i.e., each with
nine people). Before the usability study, the students vasied to review our IJCAI [67]
paper to understand the motivation and basic functionafigfEEU. After that, we handed out
the assignment which describes the evaluation guidelmesding:

"http://trellis3.tug-libraries.on.ca/

8http://hpcanpub.mcmaster.ca/

9The course name is SE4452a Software Verification and VigidaMore information can be found http:
//www.eng.uwo.ca/electrical/education/undergraduate_programs/SE4452A-2012-13Approved.
pdf.

www.manaraa.com



7.3. WsABILITY SruDIES 109

1. Queryrelevance. Evaluate the result relevance of SEEiddtnierarchy) compared with
general search engines (e.g., Google, Bing and Yahoo!}jUsite:uwo.ca”.

2. Search functionality. Evaluate the functionality of SEEuch as browsing in topic
hierarchy, searching among multiple universities andrfiiteby file types.

3. Ul adaptability. Evaluate SEEU (compared with generarde engines) on ferent
platforms that include but not limited to desktop PCs, Maain and smart phones.

Students were asked to perform many test cases based ontdirhibed to the assign-
ment guidelines we gave to them. For each test case, studpuded either it is accepted
or rejected. Specifically, an accepted case means that @inehsguality or Ul adaptability of
SEEU is better or comparable to the general web search engtimally, each group submited
a professional report including all the test cases that diey

We received the test reports in early November 2012. In,t&t@B2 test cases were con-
ducted by students. We tabulate the results in Table 7.2. ésam see, in total, about 77%
of test cases are accepted by students. For each specifiagwaltask, the result is also
very good. For example, the accept rate of query relevanaleage 70% which is quite good
for an initial design of SEEU compared with commercial skamngines (i.e.Google Search
Westeri. This result demonstrates that in university search doptambing keywords-based
search with hierarchies (e.g., topic, universities andifies) can improve search result rele-
vance.

Table 7.2: The results of a usability study in the ECE depantim Accept means the search
quality or Ul usability of SEEU is better or comparable to gemeral web search engines with
“site:uwo.ca”.

Content Accept Reject Total Accept Rate
Query relevance 206 87 293 70.31%
Search functionality 331 88 419 79.00%
Ul adaptability 297 73 370 80.27%
Total 834 248 1,082 77.08%

The highest accept rate is for the Ul adaptability. From Fegu9(a), we find that students
have evaluated SEEU on seven platforms includ®@j Mac, iPhone iPad, Android Phone
Android PadandBlackberry PlaybookWe can see that 35% of test cases were conducted on
mobile devices. The overall accept rate on mobile devicaktated from Figure 7.9(b)) is
about 769%4°. It means that SEEU on mobile device$aws students a better search experience
than general web search engines. This is as we expected. BW $6bile, users can click
different categories in hierarchies to browse or filter resuitss is much easier than typing
keywords on small keyboards.

10Computed as (54 25+ 140+ 43+ 29)/(65+ 43+ 182+ 56+ 33) = 291/379= 0.7678
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Platform Distribution
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Figure 7.9: The platform distribution and the detailed folah dependent test report from the
usability study in the ECE department. 35% of platforms aobite devices and the accept
rate on mobile devices is 76.78%.
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7.3.2 Usability Study in the CS Department

To make a real-world trail of SEEU, we invite all the facultyembers and students of the
Computer Science (CS) Department to try SEEU. This usglsilitdy started from November
2012 till March 2013. We also found many successful seammhest For example, one fac-
ulty member was looking for collaborators doing researctGomputer Security”. He used
SEEU to quickly find researchers in other universities whgangGoogle Search Westeat-
ways returns undesired results. In SEEU, this search taslbeaeasily done by searching
“professor” in “Natural Sciences?“Computer Science>»“Computer Security” with univer-
sity hierarchies selected.

To study how faculty members and students use SEEU, we fuattadyze the usage pat-
terns of users. From our search log, there are in total 4,88Gairecord$. Based on dferent
combinations of using keywords and hierarchies, we caiegtinese records into three groups
as shown in Figure 7.10(a). They are “Flat Search” (no hotwias), “Browse in Hierarchies”
(no keywords) and “Search in Hierarchies”. We plot the detbstatistics of the three usage
patterns in Figure 7.10(b).

3000

2723(63%)

2500
eywords ierarchies 1345 (31%)
Flat Search v X 1500
Browse in Hierarchies X v 1000
Search in Hierarchies v Vv
! 200 268 (6%)
0
Flat Search Browse in Search in
Hierarchies Hierarchies
(a) Classification of Usage Patterns (b) Usage Patterns Distribution

Figure 7.10: The classification of usage patterns and tighnilsition from the usability study
in the CS department.

We can see that the frequency of using SEEU'’s hierarchipgcépuniversities and files) is
about 94% while using SEEU without hierarchies is only at&8atpercentage. The high traf-
fic of using hierarchies may be due to the easy and fast brgwsifnen faculty members and
students search webpages related to academic topicsnglitie related categories in hierar-
chies makes SEEU immediately refresh the results for trextal categories. This is much
faster than typing keywords in the search box. In additionprg the usage of hierarchies,
31% of usage records do not show any keywords. This meannthia¢se records, faculty
members and students simply use SEEU to browSerdnt hierarchies. A possible explana-
tion is that when searching documents in academic topiessusay not always know the right
keywords. Sometimes, junior researchers (graduate sderen do not know exactly what
they are looking for, as they may not be familiar with the domdn SEEU, they can select

YFor this analysis, we do not count the usage from our lab. @ihésires that we exclude theffra caused by
the development and testing of SEEU in our lab.
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an appropriate category and browse the webpages. Thisyisiseful for surveying a research
area or browsing an organization.

Besides the usability study results, we also received mamyeents from faculty members
and students. Basically, most of the comments give us pgesiitings on the uniqueness of
SEEU. We highlight the main points of their comments.

¢ “In general, the hierarchy concept was very well receiveds Hn intuitive and well-
structured method of seeking more specific information.

e “The navigation of the menus was very smooth and nice to bestolumade making
selections easy for theffBrent options.

e “The ability to specify which university in Ontario that yoowld like search in further
adds to the uniqueness, versatility, and usefulness of SEEU

e “The user interface design of SEEU mobile is beautifully dohes a great looking
webpage on all mobile devices, in both landscape and parstrai

e “Most results were only a second or so slower than commeratissearch engines.
Assuming the bottleneck here is the server, SEEU is defifasi enough to be scalable
and useful enough to possibly replace current universigyaesolutions.

From the comments of users, we see a great promise for usiBl 8Euniversities.

7.4 Summary

In this chapter, we have presented the system implementatiSEEU. We discuss the chal-
lenges to build the SEEU search engine and propose seftective implementation solutions.
According to two usability studies (in the ECE and the CS dipants in our university),
SEEU is favored by the majority of participants.
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Chapter 8

Conclusions and Future Work

In this thesis, we study the problem of building a novel seanegine with integrated hierar-
chies for universities. In this final chapter, we first sumizethe contribution of this thesis,
then point out important research problems to be solvedturéuvork.

8.1 Conclusions

The web is one of the most important information media forgbe@ universities. Web search
engines, due to their success on the general web searchdmvadopted by most universities
for searching webpages in their own domains. Basically,es sisnds keywords to the search
engine and the search engine returns a flat ranked list of aggsp However, in university
search, user queries are usually related to topics (e.gdeatcs, campus life, media and so
on). Simple keyword queries are often ifistient to express topics as keywords. On the
other hand, modern E-commerce sites (such as Amazon and alBay users to browse and
search products in various hierarchies (such as produsgagt and region of the world). It
would be ideal if hierarchical browsing and keyword searah be seamlessly combined for
university search engines. The maiffidulty is to define a commonly accepted academic topic
hierarchy, and automatically classify and rank a massivelrar of webpages into hierarchies
for universities.

In this thesis, we use machine learning and data mining tquks to build a novel hybrid
search engine with integrated hierarchies for univesitalled SEEU SearchEngine with
hiErarchy forUniversities).

In Chapter 3, we develop anfective hierarchical webpage classification system, and
demonstrate itsféciency and fectiveness on large-scale webpage dataset. More spdygifical

e We implement a webpage feature extraction tool based ondéfaldlapReduce to extract
text features from large-scale webpage datasets.

e We implement a parallel hierarchical SVM (Support Vectorddiiae) classifier based on
OpenMPI.

e According to our experiments on the well-known ODP datasetempirically demon-
strate that our hierarchical classification system is véfgcéive and outperforms the
traditional flat classification approach significantly.

113
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In Chapter 4, we propose the ERIEnhancedranking by herarchicalClassification), a
novel ranking framework for search engines with hierarehMore specifically,

¢ We integrate hierarchical classification probabilitiesttbased query relevance and web-
page related metrics (such as PageRank) into a learningkdnamework.

e Empirical study on the well-known TREC (Text REtrieval Cerénce) web search datasets
show that our ranking framework with hierarchical classificn outperforms the tradi-
tional flat keywords-based search methods significantly.

In Chapter 5, we study the problem of improving hierarchadatsification when the la-
beled dataset is limited. By leveraging the top-down treecstire of hierarchy, we propose a
new active learning framework for hierarchical text cléisation. More specifically,

e We discuss theut-of-domairmproblem in the state-of-the-art parallel hierarchicalvact
learning approach.

e \We propose to leverage the top-down tree structure to carative learning for the
hierarchical classification system in a top-down manner.

e From our experiments on benchmark text classification dé&gand the ODP dataset, we
find that our hierarchical active learning strategy can@ahigood classification perfor-
mance yet save a considerable number of labelifaytecompared with the state-of-the-
art active learning methods for hierarchical text clasaifan.

In Chapter 6, we present a novel hierarchical classificdtemework for mining academic
topics in universities. More specifically,

¢ We build an academic topic hierarchy based on the commokpaed Wikipedia aca-
demic disciplines. We propose to use search engines tolguickect the training data
for this new hierarchy.

¢ We train a hierarchical classifier based on the new hieraaciayapply it to predict two
million university webpages in SEEU.

e According to our comprehensive analysis, the academic fogitern mined by our sys-
tem is reasonable, consistent with the common sense of digirgbution in most uni-
versities, and better than the traditional LDA topic moxglapproach.

In Chapter 7, based on the proposed classification and mmkéthods, we discuss the
system implementation of SEEU and conduct two usabilitdisgito evaluate the usefulness
of SEEU. More specifically,

¢ We index both webpage text features and hierarchical éiesson probabilities into the
Solrsearch platform, and develop a MVC (Model-View-Contrgllesised user interface
to separate complex visualization from user interaction.

e We conduct two usability studies to evaluate SEEU. One wadwtted at the Electrical
and Computer Engineering Department at our university, taedother one was con-
ducted at Computer Science Department at our universiti£USIEas received excellent
user feedback in the initial testing and deployment at ourarsity.
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To conclude, the main contribution of this thesis is a noealrsh engine with integrated
hierarchies for universities, called SEESe@rchEngine with hErarchy for Universities).
We discuss the challenges toward building SEEU and prop@setige machine learning and
data mining methods to tackle them. With extensive expertmen well-known benchmark
datasets and real-world university webpage datasets, wemrate that our search engine
is better than traditional keywords-based search engmeaddlition, two usability studies of
SEEU in our university show that SEEU has a great promiserfmeusity search.

8.2 Future Work

In our future work, we plan to improve our search engine ied¢hdirections.

e Firstly, we will incorporate more hierarchies to better ttep users’ search intention,
such as campus life (i.e., clubs, recreation, news), patipgetory, regions of places in
Canada, into SEEU. Some existing speciality search, sueidas and image search,
can also be introduced. In this way users can search acrdsiplmtopic hierarchies
and diterent media types.

e Secondly, we plan to use active learning on crowdsourciaggins (such as Amazon
Mechanic TurR) to improve hierarchical classification. We can use actaaning to
reduce the number of noisy training webpages crawled frarckeengines. In addition,
active learning can also be used to correct webpage claggfierrors and thus improve
hierarchical browsing.

e Thirdly, we will also study the problem of classification igrdamic (not fixed) topic
hierarchies. When a new topic (e.g., hot event, new reseaedn) is emerging, it is
very likely that many webpages belonging to that topic cahb®predicted into any
subcategories but stay at the top categories. Detectirigesuerging topics is crucial for
maintaining the #ectiveness of hierarchical classification.

Finally, we have reported our search engine to the Infolwnatind Technology Serviéa
our university. They are very interested in SEEU. We are naskimg with them to deploy
SEEU in our university.

https://www.mturk.com/mturk/
2Information and Technology Service is responsible for thevork management and search engine develop-
ment in Western University. Their home pagéistp: //www.uwo.ca/its.
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